Advertisement

Ionics

, Volume 25, Issue 7, pp 2977–2985 | Cite as

Enhanced electrochemical performance of LiMn2O4 by SiO2 modifying via electrostatic attraction forces method

  • Jia Guo
  • Yongxiang Chen
  • Chunrui Xu
  • Yunjiao LiEmail author
  • Shiyi Deng
  • Hu Xu
  • Qianye Su
Original Paper

Abstract

SiO2-modified LiMn2O4 materials were synthesized by the electrostatic attraction forces with the followed heat treatment. The surface morphology, structure, and electrochemical performance were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), CV, and electrochemical impedance spectroscopies (EIS), respectively. SEM and XRD patterns revealed that SiO2 was not only coated on the surface, but also partial Si4+ ions diffused into the crystal structure. As a result, the spinel LiMn2O4 modified with 2.0 wt.% SiO2 (LiMn2O4@SiO2-2.0 wt.%) exhibits a discharge specific capacity of 101.2 mAh g−1 over 3.0–4.3 V and with a capacity retention of 97.6% after 100 cycles at 25 °C. Even cycled at 55 °C, its capacity retention is still 88.7%. The excellent electrochemical performance is attributed to the improved reversibility and dynamic behaviors after SiO2 modification. Partial Si4+ doping in LiMn2O4 assists to stabilize its crystal structure, while the SiO2 coating layer on the surface of LiMn2O4 materials helps to reduce the attacks of electrolyte and the dissolution of Mn2+.

Keywords

Lithium ion batteries SiO2-coated Electrostatic attraction forces Spinel lithium manganese oxides Cathode material 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (No. 50174058) and the kind support from the Government of Guangxi Zhuang Autonomous Region (Glorious Laurel Scholar Program, 2011).

References

  1. 1.
    Xia H, Xia Q, Lin B, Zhu J, Seo JK, Meng YS (2016) Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy 22:475–482.  https://doi.org/10.1016/j.nanoen.2016.01.022 CrossRefGoogle Scholar
  2. 2.
    Geng S, Geng S, Zhai Y (2017) Synthesis of LiMn2O4 via high-temperature ball milling process. Mater Manuf Process 32:1856–1860.  https://doi.org/10.1080/10426914.2017.1317797 CrossRefGoogle Scholar
  3. 3.
    Niraj K , Prasad K G , Maiyalagan T , et al (2018) Precise control on morphology of ultrafine LiMn2O4 nanorods as supercapacitor electrode via two-step hydrothermal method. CrystEngComm 20(6).  https://doi.org/10.1039/C8CE01029C
  4. 4.
    Han CG, Zhu C, Saito G, Sheng N, Nomura T, Akiyama T (2017) Enhanced cycling performance of surface-doped LiMn2O4 modified by a Li2CuO2-Li2NiO2solid solution for rechargeable lithium-ion batteries. Electrochim Acta 224:71–79.  https://doi.org/10.1016/j.electacta.2016.12.041 CrossRefGoogle Scholar
  5. 5.
    Lu Z, Lu X, Ding J, Zhou T, Ge T, Yang G, Yin F, Wu M (2017) Enhanced electrochemical performance of LiMn2O4 by constructing a stable Mn2+-rich interface. Appl Surf Sci 426:19–28.  https://doi.org/10.1016/j.apsusc.2017.07.117 CrossRefGoogle Scholar
  6. 6.
    Wohlfahrt-Mehrens M, Vogler C, Garche J (2004) Aging mechanisms of lithium cathode materials. J Power Sources 127:58–64.  https://doi.org/10.1016/j.jpowsour.2003.09.034
  7. 7.
    Wu K, Qian L, Sun X, Wu N, Zhao H, Zhang Y (2018) Influence of manganese ions dissolved from LiMn2O4cathode on the degradation of Li4Ti5O12-based lithium-ion batteries. J Solid State Electrochem 22:479–485.  https://doi.org/10.1007/s10008-017-3773-2 CrossRefGoogle Scholar
  8. 8.
    Xia Y, Sakai T, Fujieda T, Yang XQ, Sun X, Ma ZF, McBreen J, Yoshio M (2001) Correlating capacity fading and structural changes in Li [sub 1+y]Mn[sub 2−y]O[sub 4−δ] spinel cathode materials: a systematic study on the effects of Li/Mn ratio and oxygen deficiency. J Electrochem Soc 148:A723.  https://doi.org/10.1149/1.1376117 CrossRefGoogle Scholar
  9. 9.
    Xia Y (1997) Capacity fading on cycling of 4 V Li∕LiMn[sub 2]O[sub 4] cells. J Electrochem Soc 144:2593.  https://doi.org/10.1149/1.1837870 CrossRefGoogle Scholar
  10. 10.
    Luo XD, Yin YZ, Yuan M, Zeng W, Lin G, Huang B, Li YW, Xiao SH (2018) High performance composites of spinel LiMn2O4/3DG for lithium ion batteries. RSC Adv 8:877–884.  https://doi.org/10.1039/c7ra12613a CrossRefGoogle Scholar
  11. 11.
    Chen X, He W, Ding L-X, Wang S, Wang H (2019) Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci  https://doi.org/10.1039/C8EE02617C
  12. 12.
    Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Cathode materials modified by surface coating for lithium ion batteries. Electrochim Acta 51:3872–3883.  https://doi.org/10.1016/j.electacta.2005.11.015 CrossRefGoogle Scholar
  13. 13.
    Liu G (2017) Effect on electrochemical performance of different ratio; cathode material. Mater Sci 07:648–654.  https://doi.org/10.12677/MS.2017.77086 Google Scholar
  14. 14.
    Lim S, Cho J (2008) PVP-assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates. Electrochem Commun 10:1478–1481.  https://doi.org/10.1016/j.elecom.2008.07.028 CrossRefGoogle Scholar
  15. 15.
    Qing C, Bai Y, Yang J, Zhang W (2011) Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating. Electrochim Acta 56:6612–6618.  https://doi.org/10.1016/j.electacta.2011.04.131 CrossRefGoogle Scholar
  16. 16.
    Kannan AM, Manthiram A (2002) Surface/chemically modified LiMn[sub 2]O[sub 4] cathodes for lithium-ion batteries. Electrochem Solid-State Lett 5:A167.  https://doi.org/10.1149/1.1482198 CrossRefGoogle Scholar
  17. 17.
    Jung KH, Kim HG, Park YJ (2011) Effects of protecting layer [Li,La]TiO3 on electrochemical properties of LiMn2O4for lithium batteries. J Alloys Compd 509:4426–4432.  https://doi.org/10.1016/j.jallcom.2011.01.110 CrossRefGoogle Scholar
  18. 18.
    Xue P, Gao D, Chen S, Zhao S, Wang B, Li L (2014) Improved high-temperature capacity retention of the LiMn2O4 cathode lithium-ion battery by ion exchange polymer coating. RSC Adv 4:52624–52628.  https://doi.org/10.1039/c4ra07209j CrossRefGoogle Scholar
  19. 19.
    Da LY, Zhao SX, Nan CW, Li BH (2011) Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery. J Alloys Compd 509:957–960.  https://doi.org/10.1016/j.jallcom.2010.08.154 CrossRefGoogle Scholar
  20. 20.
    Fan Y, Wang J, Tang Z et al (2007) Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochimica Acta 52:3870–3875.  https://doi.org/10.1016/j.electacta
  21. 21.
    Zhang LL, Liang G, Peng G, Zou F, Huang YH, Croft MC, Ignatov A (2012) Significantly improved electrochemical performance in Li3V2(PO4)3/C promoted by SiO2 coating for lithium-ion batteries. J Phys Chem C 116:12401–12408.  https://doi.org/10.1021/jp301127r CrossRefGoogle Scholar
  22. 22.
    Yao J, Shen C, Zhang P, Gregory DH, Wang L (2013) Surface coating of LiMn2O4 spinel via in situ hydrolysis route: effect of the solution. Ionics 19:739–745.  https://doi.org/10.1007/s11581-012-0802-0 CrossRefGoogle Scholar
  23. 23.
    Chen J, Wang S, Cai D, Wang H (2013) Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode. J Membr Sci 449:169–175.  https://doi.org/10.1016/j.memsci.2013.08.028 CrossRefGoogle Scholar
  24. 24.
    Arumugam D, Paruthimal Kalaignan G (2008) Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries. J Electroanal Chem 624:197–204.  https://doi.org/10.1016/j.jelechem.2008.09.007 CrossRefGoogle Scholar
  25. 25.
    Tang Y, Zhang Q, Luo Z, Liu P, Lu A (2017) Effects of Li2O-Al2O3-SiO2 system glass on the microstructure and ionic conductivity of Li7La3Zr2O12 solid electrolyte. Mater Lett 193:251–254.  https://doi.org/10.1016/j.matlet.2017.01.134 CrossRefGoogle Scholar
  26. 26.
    Iturrondobeitia A, Goñi A, Palomares V, Gil de Muro I, Lezama L, Rojo T (2012) Effect of doping LiMn2O4 spinel with a tetravalent species such as Si(IV) versus with a trivalent species such as Ga(III). Electrochemical, magnetic and ESR study. J Power Sources 216:482–488.  https://doi.org/10.1016/j.jpowsour.2012.06.031 CrossRefGoogle Scholar
  27. 27.
    Zhao H, Liu X, Cheng C, Li Q, Zhang Z, Wu Y, Chen B, Xiong W (2015) Synthesis and electrochemical characterizations of spinel LiMn1.94MO4 (M = Mn0.06, Mg0.06, Si0.06, (Mg0.03Si0.03)) compounds as cathode materials for lithium-ion batteries. J Power Sources 282:118–128.  https://doi.org/10.1016/j.jpowsour.2015.02.049 CrossRefGoogle Scholar
  28. 28.
    Zhao H, Liu S, Wang Z, Cai Y, Tan M, Liu X (2016) Enhanced elevated-temperature performance of LiAlxSi0.05Mg0.05Mn1.90-xO4(0≤x≤0.08) cathode materials for high-performance lithium-ion batteries. Electrochim Acta 199:18–26.  https://doi.org/10.1016/j.electacta.2016.03.121
  29. 29.
    Zhao H, Liu S, Wang Z, Cai Y, Tan M, Liu X (2016) LiSixMn2−xO4(x≤0.10) cathode materials with improved electrochemical properties prepared via a simple solid-state method for high-performance lithium-ion batteries. Ceram Int 42:13442–13448.  https://doi.org/10.1016/j.ceramint.2016.05.131 CrossRefGoogle Scholar
  30. 30.
    Zhu Q, Zheng S, Lu X, Wan Y, Chen Q, Yang J, Zhang LZ, Lu Z (2016) Improved cycle performance of LiMn2O4 cathode material for aqueous rechargeable lithium battery by LaF3 coating. J Alloys Compd 654:384–391.  https://doi.org/10.1016/j.jallcom.2015.09.085 CrossRefGoogle Scholar
  31. 31.
    Feng X, Zhang J, Yin L (2016) Enhanced cycling stability of Co3(PO4)2-coated LiMn2O4 cathode materials for lithium ion batteries. Powder Technol 287:77–81.  https://doi.org/10.1016/j.powtec.2015.09.031 CrossRefGoogle Scholar
  32. 32.
    Li Y, Su Q, Han Q, Li P, Li L, Xu C, Cao X, Cao G (2017) Synthesis and characterization of Mo-doped LiNi0.5Co0.2Mn0.3O2 cathode materials prepared by a hydrothermal process. Ceram Int 43:3483–3488.  https://doi.org/10.1016/j.ceramint.2016.10.038 CrossRefGoogle Scholar
  33. 33.
    Fan XF, Zhao SX, Li L, Nan CW (2012) Structure and electrochemical performance of Modificated by S-Co codoping and Nano SiO2 surface coating. Mater Sci Forum 722:1–9.  https://doi.org/10.4028/www.scientific.net/MSF.722.1 CrossRefGoogle Scholar
  34. 34.
    Zhuo H, Wan S, He C, Zhang Q, Li C, Gui D, Zhu C, Niu H, Liu J (2014) Improved electrochemical performance of spinel LiMn2O4 in situ coated with graphene-like membrane. J Power Sources 247:721–728.  https://doi.org/10.1016/j.jpowsour.2013.09.007 CrossRefGoogle Scholar
  35. 35.
    Tron A, Park YD, Mun J (2016) AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability. J Power Sources 325:360–364.  https://doi.org/10.1016/j.jpowsour.2016.06.049 CrossRefGoogle Scholar
  36. 36.
    Ming H, Yan Y, Ming J, Adkins J, Li X, Zhou Q, Zheng J (2014) Gradient V2O5 surface-coated LiMn2O4 cathode towards enhanced performance in Li-ion battery applications. Electrochim Acta 120:390–397.  https://doi.org/10.1016/j.electacta.2013.12.096 CrossRefGoogle Scholar
  37. 37.
    Fu MH, Huang KL, Liu SQ et al (2016) Lithium difluoro ( oxalato ) borate / ethylene carbonate + propylene carbonate + ethyl ( methyl ) carbonate electrolyte for LiMn2O4 cathode. J Power Sources 195:862–866.  https://doi.org/10.1016/j.jpowsour.2009.08.042 CrossRefGoogle Scholar
  38. 38.
    McGrogan FP, Chiang YM, Van Vliet KJ (2017) Effect of transition metal substitution on elastoplastic properties of LiMn2O4 spinel. J Electroceram 38:215–221.  https://doi.org/10.1007/s10832-016-0057-7 CrossRefGoogle Scholar
  39. 39.
    Cady CW, Gardner G, Maron ZO, Retuerto M, Go YB, Segan S, Greenblatt M, Dismukes GC (2015) Tuning the electrocatalytic water oxidation properties of spinel nanocrystals: A (Li, Mg, Zn) and B (Mn, Co). ACS Catalysis 5:3403–3410.  https://doi.org/10.1021/acscatal.5b00265 CrossRefGoogle Scholar
  40. 40.
    Stiaszny B, Ziegler JC, Krauß EE, et al (2014) Electrochemical characterization and post-mortem analysis of aged LiMn2O4–NMC/graphite lithium ion batteries part II: Calendar aging. Journal of Power Sources 258:61–75.  https://doi.org/10.1016/j.jpowsour.2014.02.019
  41. 41.
    Zhang Z, Chen Z, Wang G, Ren H, Pan M, Xiao L, Wu K, Zhao L, Yang J, Wu Q, Shu J, Wang D, Zhang H, Huo N, Li J (2016) Dual-doping to suppress cracking in spinel LiMn2O4: a joint theoretical and experimental study. Phys Chem Chem Phys 18:6893–6900.  https://doi.org/10.1039/c5cp07182h CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jia Guo
    • 1
  • Yongxiang Chen
    • 1
  • Chunrui Xu
    • 1
  • Yunjiao Li
    • 1
    Email author
  • Shiyi Deng
    • 1
  • Hu Xu
    • 1
  • Qianye Su
    • 1
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations