, Volume 25, Issue 7, pp 3153–3164 | Cite as

Development of a new ceria/yttria-ceria double-doped bismuth oxide bilayer electrolyte low-temperature SOFC with higher stability

  • Alireza Pesaran
  • Abhishek Jaiswal
  • Yaoyu Ren
  • Eric D. WachsmanEmail author
Original Paper


A new anode-supported ceria/bismuth oxide bilayer electrolyte solid oxide fuel cell (SOFC) was developed. Yittria-ceria double-doped bismuth oxide (Bi0.75Y0.25)1.86Ce0.14O3 ± δ, (YCSB) which showed stable ionic conductivity across the temperature range of 650–500 °C was used as both the second electrolyte layer and as the oxygen ion conductor phase in the cathode. For a cell with a ~ 20 μm 10% gadolinium-doped ceria (GDC) layer and a ~ 12–13 μm YCSB layer, open circuit voltage (OCV) and maximum power density (MPD) of the cell at 650 °C reached 0.833 V and 760 mW/cm2, respectively. OCV stability of this bilayer was measured for 50 h at 625 and 600 °C (100 h in total), and exceptional stability of OCV with zero degradation was observed. In comparison, the cell with 10GDC/erbium-stabilized bismuth oxide (ESB) bilayer electrolyte showed a very rapid degradation of OCV at 600 °C (average hourly degradation rate of − 0.55%/h). In addition to the exceptional OCV stability, this new bilayer electrolyte exhibited no ohmic area-specific resistance (ASR) degradation at 600 and 625 °C. In contrast, the ohmic ASR of the cell with 10GDC/ESB bilayer electrolyte at 600 °C increased by five times over the first 50 h of operation mainly due to the conductivity decay of ESB. The rate of non-ohmic ASR degradation was also decreased by replacing the ESB with YCSB in the cathode structure.


SOFCs Low temperature Bilayer electrolyte Ceria Bismuth oxide Electrochemical stability 


Funding information

The authors wish to thank the funding support for this work from the Department of Energy under ARPA-E contract no. DE-AR0000494.


  1. 1.
    Courtin E, Boy P, Piquero T, Vulliet J, Poirot N, Laberty-Robert C (2012) A composite sol–gel process to prepare a YSZ electrolyte for solid oxide fuel cells. J Power Sources 206:77–83CrossRefGoogle Scholar
  2. 2.
    Haile SM (2003) Fuel cell materials and components☆☆☆The Golden Jubilee Issue—selected topics in materials science and engineering: past, present and future, edited by S. Suresh. Acta Mater 51:5981–6000CrossRefGoogle Scholar
  3. 3.
    Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler L (2000) Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics 131:79–96CrossRefGoogle Scholar
  4. 4.
    Minh NQ (1993) Ceramic Fuel Cells. J Am Ceram Soc 76:563–588CrossRefGoogle Scholar
  5. 5.
    Steele BC, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRefGoogle Scholar
  6. 6.
    Singh P, Minh NQ (2004) Solid oxide fuel cells: technology status. Int J Appl Ceram Technol 1(1):5–15Google Scholar
  7. 7.
    Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science (New York, NY) 334:935–939CrossRefGoogle Scholar
  8. 8.
    Tsai T, Perry E, Barnett S (1997) Low-temperature solid-oxide fuel cells utilizing thin bilayer electrolytes. J Electrochem Soc 144:L130–L132CrossRefGoogle Scholar
  9. 9.
    Wachsman ED (2009) Development of a Lower Temperature SOFC. ECS Trans 25(2):783–788Google Scholar
  10. 10.
    Park JY, Yoon H, Wachsman ED (2005) Fabrication and characterization of high-conductivity bilayer electrolytes for intermediate-temperature solid oxide fuel cells. J Am Ceram Soc 88:2402–2408CrossRefGoogle Scholar
  11. 11.
    Park J-Y, Wachsman ED (2005) Lower temperature electrolytic reduction of CO[sub 2] to O[sub 2] and CO with high-conductivity solid oxide bilayer electrolytes. J Electrochem Soc 152:A1654–A1659CrossRefGoogle Scholar
  12. 12.
    Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52:165–172CrossRefGoogle Scholar
  13. 13.
    Zha S, Xia C, Meng G (2003) Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J Power Sources 115:44–48CrossRefGoogle Scholar
  14. 14.
    Omar S, Wachsman ED, Nino JC (2007) Higher ionic conductive ceria-based electrolytes for solid oxide fuel cells. Appl Phys Lett 91(14):144106Google Scholar
  15. 15.
    Bishop SR, Stefanik TS, Tuller HL (2011) Electrical conductivity and defect equilibria of Pr0.1Ce0.9O2−δ. Phys Chem Chem Phys 13:10165–10173CrossRefGoogle Scholar
  16. 16.
    Yahiro H, Baba Y, Eguchi K, Arai H (1988) High temperature fuel cell with ceria-yttria solid electrolyte. J Electrochem Soc 135:2077–2080CrossRefGoogle Scholar
  17. 17.
    Zhang X, Robertson M, Decès-Petit C, Xie Y, Hui R, Yick S, Styles E, Roller J, Kesler O, Maric R, Ghosh D (2006) NiO–YSZ cermets supported low temperature solid oxide fuel cells. J Power Sources 161:301–307CrossRefGoogle Scholar
  18. 18.
    Hui S, Yang D, Wang Z, Yick S, Decès-Petit C, Qu W, Tuck A, Maric R, Ghosh D (2007) Metal-supported solid oxide fuel cell operated at 400–600°C. J Power Sources 167:336–339CrossRefGoogle Scholar
  19. 19.
    Yamaguchi T, Shimizu S, Suzuki T, Fujishiro Y, Awano M (2008) Demonstration of the rapid start-up operation of cathode-supported sofcs using a microtubular LSM support. J Electrochem Soc 155:B1141–B1144CrossRefGoogle Scholar
  20. 20.
    Yamaguchi T, Shimizu S, Suzuki T, Fujishiro Y, Awano M (2008) Evaluation of micro LSM-supported GDC/ScSZ bilayer electrolyte with LSM–GDC activation layer for intermediate temperature-SOFCs. J Electrochem Soc 155:B423–B426CrossRefGoogle Scholar
  21. 21.
    Yamaguchi T, Shimizu S, Suzuki T, Fujishiro Y, Awano M (2009) Effect of Anode Composition on the Performances of Cathode Supported Micro Channel SOFCs. ECS Trans 25(2):939–943Google Scholar
  22. 22.
    Wang Z, Huang X, Lv Z, Zhang Y, Wei B, Zhu X, Wang Z, Liu Z (2015) Preparation and performance of solid oxide fuel cells with YSZ/SDC bilayer electrolyte. Ceram Int 41:4410–4415CrossRefGoogle Scholar
  23. 23.
    Zhang X, Gazzarri J, Robertson M, Decès-Petit C, Kesler O (2008) Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte. J Power Sources 185:1049–1055CrossRefGoogle Scholar
  24. 24.
    Seok C, Moon J, Park M, Hong J, Kim H, Son J-W, Lee J-H, Kim B-K, Lee H-W, Yoon KJ (2016) Low-temperature co-sintering technique for the fabrication of multi-layer functional ceramics for solid oxide fuel cells. J Eur Ceram Soc 36:1417–1425CrossRefGoogle Scholar
  25. 25.
    Yang D, Zhang X, Nikumb S, Decès-Petit C, Hui R, Maric R, Ghosh D (2007) Low temperature solid oxide fuel cells with pulsed laser deposited bi-layer electrolyte. J Power Sources 164:182–188CrossRefGoogle Scholar
  26. 26.
    Koval’chuk AN, et al (2018) Single SOFC with Supporting Ni-YSZ Anode, Bilayer YSZ/GDC Film Electrolyte, and La 2 NiO 4+ δ Cathode. Russ J Electrochem 54(6):541–546Google Scholar
  27. 27.
    Jee Y, Cho GY, An J, Kim H-R, Son J-W, Lee J-H, Prinz FB, Lee MH, Cha SW (2014) High performance bi-layered electrolytes via atomic layer deposition for solid oxide fuel cells. J Power Sources 253:114–122CrossRefGoogle Scholar
  28. 28.
    Yoo Y (2006) Fabrication and characterization of thin film electrolytes deposited by RF magnetron sputtering for low temperature solid oxide fuel cells. J Power Sources 160:202–206CrossRefGoogle Scholar
  29. 29.
    Myung D-H, Hong J, Yoon K, Kim B-K, Lee H-W, Lee J-H, Son J-W (2012) The effect of an ultra-thin zirconia blocking layer on the performance of a 1-μm-thick gadolinia-doped ceria electrolyte solid-oxide fuel cell. J Power Sources 206:91–96CrossRefGoogle Scholar
  30. 30.
    Oh EO, Whang CM, Lee YR, Park SY, Prasad DH, Yoon KJ, Son JW, Lee JH, Lee HW (2012) Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD). Adv Mater 24:3373–3377CrossRefGoogle Scholar
  31. 31.
    Qian J, Tao Z, Xiao J, Jiang G, Liu W (2013) Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition. Int J Hydrog Energy 38:2407–2412CrossRefGoogle Scholar
  32. 32.
    Lee Y, Park YM, Choi GM (2014) Micro-solid oxide fuel cell supported on a porous metallic Ni/stainless-steel bi-layer. J Power Sources 249:79–83CrossRefGoogle Scholar
  33. 33.
    Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P (2000) Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta Mater 48:4709–4714CrossRefGoogle Scholar
  34. 34.
    Gao Z, Kennouche D, Barnett SA (2014) Reduced-temperature firing of solid oxide fuel cells with zirconia/ceria bi-layer electrolytes. J Power Sources 260:259–263CrossRefGoogle Scholar
  35. 35.
    Mukai T, Tsukui S, Yoshida K, Yamaguchi S, Hatayama R, Adachi M, Ishibashi H, Kakehi Y, Satoh K, Kusaka T (2013) Fabrication of Y2O3-doped zirconia/gadolinia-doped ceria bilayer electrolyte thin film SOFC cells of SOFCs by single-pulsed laser deposition processing. J Fuel Cell Science Technol 10:061006CrossRefGoogle Scholar
  36. 36.
    Jordan N, Assenmacher W, Uhlenbruck S, Haanappel VAC, Buchkremer HP, Stöver D, Mader W (2008) Solid state ionics 16: proceedings of the 16th International Conference on Solid State Ionics (SSI-16), Part I, 179: 919–923Google Scholar
  37. 37.
    Fonseca FC, Uhlenbruck S, Nedéléc R, Buchkremer HP (2010) Properties of bias-assisted sputtered gadolinia-doped ceria interlayers for solid oxide fuel cells. J Power Sources 195:1599–1604CrossRefGoogle Scholar
  38. 38.
    Oh E-O, Whang C-M, Lee Y-R, Park S-Y, Prasad DH, Yoon KJ, Kim B-K, Son J-W, Lee J-H, Lee H-W (2014) Fabrication of thin-film gadolinia-doped ceria (GDC) interdiffusion barrier layers for intermediate-temperature solid oxide fuel cells (IT-SOFCs) by chemical solution deposition (CSD). Ceram Int 40:8135–8142CrossRefGoogle Scholar
  39. 39.
    Park T, Lee YH, Cho GY, Ji S, Park J, Chang I, Cha SW (2015) The 7th International Conference on Technological Advances of Thin Films & Surface Coatings (ThinFilms2014), 584 120–124Google Scholar
  40. 40.
    Yu W, Cho GY, Hong S, Lee Y, Kim YB, An J, Cha SW (2016) PEALD YSZ-based bilayer electrolyte for thin film-solid oxide fuel cells. Nanotechnology 27:415402CrossRefGoogle Scholar
  41. 41.
    Noh H-S, Hong J, Kim H, Yoon KJ, Kim B-K, Lee H-W, Lee J-H, Son J-W (2016) Scale-up of thin-film deposition-based solid oxide fuel cell by sputtering, a commercially viable thin-film technology. J Electrochem Soc 163:F613–F617CrossRefGoogle Scholar
  42. 42.
    Schlupp MVF, Evans A, Martynczuk J, Prestat M (2014) Micro-solid oxide fuel cell membranes prepared by aerosol-assisted chemical vapor deposition. Adv Energy Mater 4(5):1301383Google Scholar
  43. 43.
    Yang S-H, Choi H-W (2014) Fabrication of YSZ/GDC bilayer electrolyte thin film for solid oxide fuel cells. Trans Electr Electron Mater 15:189–192CrossRefGoogle Scholar
  44. 44.
    An J, Kim Y-B, Park J, Gür TM, Prinz FB (2013) Three-dimensional nanostructured bilayer solid oxide fuel cell with 1.3 W/cm2 at 450 °C. Nano Lett 13:4551–4555CrossRefGoogle Scholar
  45. 45.
    Tsai T, Barnett SA (1998) Effect of mixed-conducting interfacial layers on solid oxide fuel cell anode performance. J Electrochem Soc 145:1696–1701CrossRefGoogle Scholar
  46. 46.
    Jiang Y, Virkar AV (2003) Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs. J Electrochem Soc 150:A942–A951CrossRefGoogle Scholar
  47. 47.
    Ji S, Lee YH, Park T, Cho GY, Noh S, Lee Y, Kim M, Ha S, J An, Cha SW (2015) Selected papers from 16th International Conference on Thin Films, October 13-16, 2014, Dubrovnik, Croatia, 591, Part B: 250–254Google Scholar
  48. 48.
    Martinez-Amesti A, Larranaga A, Rodriguez-Martinez LM, Aguayo AT, Pizarro JL, Nó ML, Laresgoiti A, Arriortua MI (2009) J Electrochem Soc 156:B856eB861Google Scholar
  49. 49.
    Jiang N, Wachsman ED, Jung S-H (2002) A higher conductivity Bi2O3-based electrolyte. Solid State Ionics 150:347–353CrossRefGoogle Scholar
  50. 50.
    Wachsman ED, Jayaweera P, Jiang N, Lowe DM, Pound BG (1997) Stable high conductivity ceria/bismuth oxide bilayered electrolytes. J Electrochem Soc 144:233–236CrossRefGoogle Scholar
  51. 51.
    Jiang N, Wachsman ED (1999) Structural stability and conductivity of phase‐stabilized cubic bismuth oxides. J Am Ceram Soc 82(11):3057–3064Google Scholar
  52. 52.
    Wachsman ED, Boyapati S, Kaufman MJ, Jiang N (2000) Modeling of ordered structures of phase‐stabilized cubic bismuth oxides. J Am Ceram Soc 83(8):1964–1968Google Scholar
  53. 53.
    Park J-Y, Wachsman ED (2006) Stable and high conductivity ceria/bismuth oxide bilayer electrolytes for lower temperature solid oxide fuel cells. Ionics 12:15–20CrossRefGoogle Scholar
  54. 54.
    Wachsman ED (2002) Functionally gradient bilayer oxide membranes and electrolytes. Solid State Ionics 152:657–662Google Scholar
  55. 55.
    Zhang L, Xia C, Zhao F, Chen F (2010) Thin film ceria–bismuth bilayer electrolytes for intermediate temperature solid oxide fuel cells with La0.85Sr0.15MnO3−δ–Y0.25Bi0.75O1.5 cathodes. Mater Res Bull 45:603–608CrossRefGoogle Scholar
  56. 56.
    Ahn JS, Camaratta MA, Pergolesi D, Lee KT, Yoon H, Lee BW, Jung DW, Traversa E, Wachsman ED (2010) Development of high performance ceria/bismuth oxide bilayered electrolyte SOFCs for lower temperature operation. J Electrochem Soc 157:B376–B382CrossRefGoogle Scholar
  57. 57.
    Lee KT, Jung DW, Camaratta MA, Yoon HS, Ahn JS, Wachsman ED (2012) Gd0.1Ce0.9O1.95/Er0.4Bi1.6O3 bilayered electrolytes fabricated by a simple colloidal route using nano-sized Er0.4Bi1.6O3 powders for high performance low temperature solid oxide fuel cells. J Power Sources 205:122–128CrossRefGoogle Scholar
  58. 58.
    Zhang L, Li L, Zhao F, Chen F, Xia C (2011) Sm0.2Ce0.8O1.9/Y0.25Bi0.75O1.5 bilayered electrolytes for low-temperature SOFCs with Ag-Y0.25Bi0.75O1.5 composite cathodes. Solid State Ionics 192:557–560CrossRefGoogle Scholar
  59. 59.
    Hou J, Bi L, Qian J, Zhu Z, Zhang J, Liu W (2015) High performance ceria–bismuth bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) fabricated by combining co-pressing with drop-coating. J Mater Chem A 3:10219–10224CrossRefGoogle Scholar
  60. 60.
    Leng Y, Chan S (2006) Anode-supported SOFCs with Y2O3-doped Bi2O3 / Gd2O3-doped CeO2 composite electrolyte film. Electrochem Solid-State Lett 9:A56–A59CrossRefGoogle Scholar
  61. 61.
    Ahn JS, Pergolesi D, Camaratta MA, Yoon H, Lee BW, Lee KT, Jung DW, Traversa E, Wachsman ED (2009) High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells. Electrochem Commun 11:1504–1507CrossRefGoogle Scholar
  62. 62.
    Lee KT, Jung DW, Yoon HS, Lidie AA, Camaratta MA, Wachsman ED (2012) Interfacial modification of La0.80Sr0.20MnO3−δ–Er0.4Bi0.6O3 cathodes for high performance lower temperature solid oxide fuel cells. J Power Sources 220:324–330CrossRefGoogle Scholar
  63. 63.
    Hou J, Liu F, Gong Z, Wu Y, Liu W (2015) Different ceria-based materials Gd0.1Ce0.9O2−δ and Sm0.075Nd0.075Ce0.85O2−δ for ceria–bismuth bilayer electrolyte high performance low temperature solid oxide fuel cells. J Power Sources 299:32–39CrossRefGoogle Scholar
  64. 64.
    Hou J, Bi L, Qian J, Gong Z, Zhu Z, Liu W (2016) A novel composite cathode Er 0.4 Bi 1.6 O 3 –Pr 0.5 Ba 0.5 MnO 3−δ for ceria-bismuth bilayer electrolyte high performance low temperature solid oxide fuel cells. J Power Sources 301:306–311CrossRefGoogle Scholar
  65. 65.
    Sanna S, Esposito V, Andreasen JW, Hjelm J, Zhang W, Kasama T, Simonsen SB, Christensen M, Linderoth S, Pryds N (2015) Enhancement of the chemical stability in confined δ-Bi 2 O 3. Nat Mater 14(5):500Google Scholar
  66. 66.
    Lee JG, Park MG, Yoon HH, Shul YG (2013) Application of GDC-YDB bilayer and LSM-YDB cathode for intermediate temperature solid oxide fuel cells. J Electroceram 31:231–237CrossRefGoogle Scholar
  67. 67.
    Ruth AL, Lee KT, Clites M, Wachsman ED (2014) Synthesis and characterization of double-doped bismuth oxide electrolytes for lower temperature SOFC application. ECS Trans 64:135–141CrossRefGoogle Scholar
  68. 68.
    Boyapati S, Wachsman ED, Chakoumakos BC (2001) Neutron diffraction study of occupancy and positional order of oxygen ions in phase stabilized cubic bismuth oxides. Solid State Ionics 138:293–304CrossRefGoogle Scholar
  69. 69.
    Boyapati S, Wachsman ED, Jiang N (2001) Effect of oxygen sublattice ordering on interstitial transport mechanism and conductivity activation energies in phase-stabilized cubic bismuth oxides. Solid State Ionics 140:149–160CrossRefGoogle Scholar
  70. 70.
    Huang K, Feng M, Goodenough JB (1996) Bi2O3_Y2O3_CeO2 solid solution oxide-ion electrolyte. Solid State Ionics 89:17–24CrossRefGoogle Scholar
  71. 71.
    Zhang C, Huang K (2017) A new composite cathode for intermediate temperature solid oxide fuel cells with zirconia-based electrolytes. J Power Sources 342:419–426CrossRefGoogle Scholar
  72. 72.
    Jaiswal A, Wachsman ED (2005) Bismuth-ruthenate-based cathodes for IT-SOFCs. J Electrochem Soc 152:A787–A790CrossRefGoogle Scholar
  73. 73.
    Jaiswal A, Hu C-T, Wachsman ED (2007) Bismuth ruthenate-stabilized bismuth oxide composite cathodes for IT-SOFC. J Electrochem Soc 154:B1088–B1094CrossRefGoogle Scholar
  74. 74.
    Jaiswal A, Pesaran A, Omar S, Wachsman ED (2017) Ceria/bismuth oxide bilayer electrolyte based low-temperature SOFCs with stable electrochemical performance. ECS Trans 78:361–370CrossRefGoogle Scholar
  75. 75.
    Yang T, Zhao H, Fang M, Świerczek K, Wang J, Du Z (2019) A new family of Cu-doped lanthanum silicate apatites as electrolyte materials for SOFCs: Synthesis, structural and electrical properties. J Eur Ceram Soc 39(2-3):424–431Google Scholar
  76. 76.
    Fop S, Skakle JM, McLaughlin AC, Connor PA, Irvine JT, Smith RI, Wildman EJ (2016) Oxide ion conductivity in the hexagonal perovskite derivative Ba3MoNbO8.5. J Am Chem Soc 138:16764–16769CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alireza Pesaran
    • 1
  • Abhishek Jaiswal
    • 1
  • Yaoyu Ren
    • 1
  • Eric D. Wachsman
    • 1
    Email author
  1. 1.Maryland Energy Innovation InstituteUniversity of Maryland College ParkCollege ParkUSA

Personalised recommendations