, Volume 25, Issue 7, pp 3165–3177 | Cite as

Carbon dioxide reduction on the composite of copper and praseodymium-doped ceria electrode in a solid oxide electrolysis cells

  • Neetu Kumari
  • M. Ali HaiderEmail author
  • Pankaj K. Tiwari
  • Suddhastawa BasuEmail author
Original Paper


Electrochemical reduction of CO2 is performed in a solid oxide electrolysis cell (SOEC), with Cu-Pr0.1Ce0.9O2-δ (Cu-PDC) composite cathode and La0.8Sr0.2MnO3-δ (LSM) anode on yttria-stabilized zirconia (YSZ) electrolyte. The electrochemical performance of the fabricated SOEC for CO2 reduction is compared with a similar high-temperature SOEC having Cu-infiltrated praseodymium-doped ceria electrode (Neetu et al., ECS Transaction 78, 3329, 2017). On varying the applied potentials and reducing environment at different volumetric ratio of CO2/CO and CO2/H2, electrochemical measurements are carried out to understand the role of reducing atmosphere. On the Cu-PDC composite electrode, a significantly improved reduction current (− 0.84 A cm−2 at Vapp = 2.5 V) is measured as compared to the Cu-infiltrated electrode reported earlier. Oxygen vacancy formation energy on doped ceria surface is calculated, using density functional theory, and found to be relatively lower (∆Evac = 84.6 kJ mole−1) as compared to the un-doped ceria surface (∆Evac = 152.8 kJ mole−1), indicating facile oxygen anion transport in Cu-PDC. Density of state calculations shows Pr substitution in ceria responsible for the reduction in band gap [O(2p) → Ce(4f)] from 1.75 to 0.4 eV, contributing to electronic conduction. The theoretical results thus elucidate the activity of Pr-doped ceria materials for CO2 reduction to CO. The theoretical results combined with experiments conducted on Cu-PDC electrode are therefore expected to provide a basis for the development of a new electrocatalyst for CO2 reduction.


Carbon dioxide reduction Electrocatalyst Ceria Solid oxide electrolysis Density functional theory 



We acknowledge the computer service center of Indian Institute of Technology, for providing the high-performance computing systems (HPC). We acknowledge Dr. Manish Agrawal, Dr. Nishant Sinha, and Uzma Anjum for their help in DFT calculations.

Funding information

This study is financially supported by GAIL R&D and Department of Science and Technology (DST), Government of India.


  1. 1.
    Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Util 3:65CrossRefGoogle Scholar
  2. 2.
    Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products—a review and potential future developments. J CO2 Util 5:66–81CrossRefGoogle Scholar
  3. 3.
    Li W (2010) Electrocatalytic Reduction of CO2 to small organic molecule fuels on metal catalysts. In: Hu YH (ed) Advances in CO2 Conversion and Utillization. American Chemical Society, pp. 5–55.
  4. 4.
    Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Photocatalytic reduction of CO2 with H2O on Ti-containing porous silica thin film photocatalysts. Catal Lett 80:111CrossRefGoogle Scholar
  5. 5.
    Porosoff MD, Yan B, Chen JG (2015) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 2:303Google Scholar
  6. 6.
    Kumari N, Ali Haider M, Basu S (2016) Mechanism of catalytic and electrocatalytic CO2 reduction to fuels and chemicals. In: Qiao J, Liu Y, Zhang J (eds) Electrochemical reduction of carbon dioxide fundamental and technologies, 1st edn. Taylor & Francis, Boca Raton, pp 267–291Google Scholar
  7. 7.
    Lim RJ, Xie M, Sk MA, Lee J-M, Fisher A, Wang X, Lim KH (2014) A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal Today 233:169–180CrossRefGoogle Scholar
  8. 8.
    Basu S, Shegokar A, Biswal D (2017) Synthesis and characterization of supported Sn/γ-Al2O3 and Sn/ZSM5 catalysts for CO2 reduction in electrochemical cell. J CO2 Util 18:80–88CrossRefGoogle Scholar
  9. 9.
    Hori Y, Konishi H, Futamura T, Murata A, Koga O, Sakurai H, Oguma K (2005) Deactivation of copper electrode in electrochemical reduction of CO2. Electrochim Acta 50:5354–5369CrossRefGoogle Scholar
  10. 10.
    Garg G, Basu S (2015) Studies on degradation of copper nano particles in cathode for CO2 electrolysis to organic compounds. Electrochim Acta 177:359–365CrossRefGoogle Scholar
  11. 11.
    Uhm S, Kim YD (2014) Electrochemical conversion of carbon dioxide in a solid oxide electrolysis cell. Curr Appl Phys 14:672–679CrossRefGoogle Scholar
  12. 12.
    Laguna-Bercero MA (2012) Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J Power Sources 203:4–16CrossRefGoogle Scholar
  13. 13.
    Li W, Wang H, Shi Y, Cai N (2013) Performance and methane production characteristics of H2O–CO2 co-electrolysis in solid oxide electrolysis cells. Int J Hydrog Energy 38:11104–11109CrossRefGoogle Scholar
  14. 14.
    Yue X, Irvine JTS (2012) Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells. J Electrochem Soc 159:F442–F448CrossRefGoogle Scholar
  15. 15.
    Kumari N, Haider MA, Agarwal M, Sinha N, Basu S (2016) Role of reduced CeO2(110) surface for CO2 reduction to CO and methanol. J Phys Chem C 120:16635CrossRefGoogle Scholar
  16. 16.
    Singh V, Muroyama H, Matsui T, Hashigami S, Inagaki T, Eguchi K (2015) Feasibility of alternative electrode materials for high temperature CO2 reduction on solid oxide electrolysis cell. J Power Sources 293:642–648CrossRefGoogle Scholar
  17. 17.
    Green RD, Liu C, Adler SB (2008) Carbon dioxide reduction on gadolinia-doped ceria cathodes. Solid State Ionics 179:647–660CrossRefGoogle Scholar
  18. 18.
    Cheng CY, Kelsall GH, Kleiminger L (2013) Reduction of CO2 to CO at Cu-ceria-gadolinia (CGO) cathode in solid oxide electrolyser. J Appl Electrochem 43:1131–1144CrossRefGoogle Scholar
  19. 19.
    Zha S, Xia C, Meng G (2003) Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J Power Sources 115:44–48CrossRefGoogle Scholar
  20. 20.
    Chockalingam R, Ganguli AK, Basu S (2014) Praseodymium and gadolinium doped ceria as a cathode material for low temperature solid oxide fuel cells. J Power Sources 250:80–89CrossRefGoogle Scholar
  21. 21.
    Hayashi H, Saitou T, Maruyama N, Inaba H, Kawamura K, Mori M (2005) Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents. J Solid State Ionics 176:613–619CrossRefGoogle Scholar
  22. 22.
    Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19CrossRefGoogle Scholar
  23. 23.
    Huang T-J, Shen X-D, Chou C-L (2009) Characterization of Cu, Ag and Pt added La0.6Sr0.4Co0.2Fe0.8O3−δ and gadolinia-doped ceria as solid oxide fuel cell electrodes by temperature-programmed techniques. J Power Sources 187:348–355CrossRefGoogle Scholar
  24. 24.
    Zhao Y-F, Yang Y, Mims C, Peden CHF, Li J, Mei D (2011) Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O. J Catal 281:199–211CrossRefGoogle Scholar
  25. 25.
    Nie X, Luo W, Janik MJ, Asthagiri A (2014) Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J Catal 312:108–122CrossRefGoogle Scholar
  26. 26.
    Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD et al (2014) Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345:546–550CrossRefGoogle Scholar
  27. 27.
    Tuller HL, Bishop SR, Chen D, Kuru Y, Kim J-J, Stefanik TS (2012) Praseodymium doped ceria: model mixed ionic electronic conductor with coupled electrical, optical, mechanical and chemical properties. Solid State Ionics 225:194–197CrossRefGoogle Scholar
  28. 28.
    Bishop SR, Stefanik TS, Tuller HL (2011) Electrical conductivity and defect equilibria of Pr0.1Ce0.9O(2-δ). Phys Chem Chem Phys 13:10165–10173CrossRefGoogle Scholar
  29. 29.
    Lee Y-L, Kleis J, Rossmeisl J, Shao-Horn Y, Morgan D (2011) Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ Sci 4:3966CrossRefGoogle Scholar
  30. 30.
    Zhang C, Michaelides A, King DA, Jenkins SJ (2009) Oxygen vacancy clusters on ceria: decisive role of cerium f electrons. Phys Rev B 79:075433CrossRefGoogle Scholar
  31. 31.
    Dholabhai PP, Adams JB, Crozier P, Sharma R (2010) Oxygen vacancy migration in ceria and Pr-doped ceria: a DFT+U study. J Chem Phys 132:094104CrossRefGoogle Scholar
  32. 32.
    McIntosh S, Vohs JM, Gorte RJ (2003) Impedance spectroscopy for the characterization of Cu-ceria-YSZ anodes for SOFCs. J Electrochem Soc 150:A1305CrossRefGoogle Scholar
  33. 33.
    Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRefGoogle Scholar
  34. 34.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRefGoogle Scholar
  35. 35.
    Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  36. 36.
    Cheng Z, Sherman BJ, Lo CS (2013) Carbon dioxide activation and dissociation on ceria (110): a density functional theory study. J Chem Phys 138:014702CrossRefGoogle Scholar
  37. 37.
    Kumari N, Sinha N, Haider MA, Basu S (2015) CO2 reduction to methanol on CeO2(110) surface: a density functional theory study. Electrochim Acta 177:21–29CrossRefGoogle Scholar
  38. 38.
    Kumari N, Haider MA, Sinha N, Basu S (2015) Density functional theory study of CO2 adsorption and reduction on stoichiometric and doped ceria. ECS Trans 68:155–166CrossRefGoogle Scholar
  39. 39.
    Dow WP, Wang YP, Huang TJ (1996) Yttria-stabilized zirconia supported copper oxide catalyst. J Catal 160:155–170CrossRefGoogle Scholar
  40. 40.
    Fan L, Wang C, Chen M, Zhu B (2013) Recent development of ceria-based (nano) composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J Power Sources 234:154–174CrossRefGoogle Scholar
  41. 41.
    Lee S, Kim J-M, Hong HS, Woo S-K (2009) Fabrication and characterization of Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method. J Alloys Compd 467:614–621CrossRefGoogle Scholar
  42. 42.
    De Leitenburg C, Trovarelli A, Kă J (1997) A temperature-programmed and transient kinetic study of CO2 activation and methanation over CeO2 supported noble metals. J Catal 166:98–107CrossRefGoogle Scholar
  43. 43.
    Zhang C, Li CJ, Zhang G, Ning XJ, Li CX, Liao H, Coddet C (2007) Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Mater Sci Eng B 137:24–30CrossRefGoogle Scholar
  44. 44.
    Kim-Lohsoontorn P, Bae J (2011) Electrochemical performance of solid oxide electrolysis cell electrodes under high-temperature coelectrolysis of steam and carbon dioxide. J Power Sources 196:7161–7168CrossRefGoogle Scholar
  45. 45.
    Rahmanipour M, Pappacena A, Boaro M, Donazzi A (2017) A distributed charge transfer model for IT-SOFCs based on ceria electrolytes. J Electrochem Soc 164:F1249–F1264CrossRefGoogle Scholar
  46. 46.
    Kharton VV (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 6:1105CrossRefGoogle Scholar
  47. 47.
    Bidrawn F, Kim G, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2008) Efficient reduction of CO2 in a solid oxide electrolyzer. Electrochem Solid-State Lett 11:B167CrossRefGoogle Scholar
  48. 48.
    Ebbesen SD, Graves C, Mogensen M (2009) Production of synthetic fuels by co-electrolysis of steam and carbon dioxide. Int J Green Energy 6:646–660CrossRefGoogle Scholar
  49. 49.
    Li Y, pan li BH, Xia C (2016) Nanotructured ceramic fuel electrode for efficient CO2/H2O electrolysis without safe gas. J Mater Chem A 4:9236–9243CrossRefGoogle Scholar
  50. 50.
    Zhan Z, Kobsiriphat W, Wilson JR, Pillai M, Kim I, Barnett SA (2009) Syngas production by co-electrolysis of CO2/H2O: the basis for a renewable energy cycle. Energy Fuel 23:3089–3096CrossRefGoogle Scholar
  51. 51.
    Daza YA, Kent RA, Yung MM, Kuhn JN (2014) Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides. Ind Eng Chem Res 53:5828–5837CrossRefGoogle Scholar
  52. 52.
    Pekridis G, Kalimeri K, Kaklidis N, Vakouftsi E, Iliopoulou EF, Athanasiou C, Marnellos GE (2007) Study of the reverse water gas shift (RWGS) reaction over Pt in a solid oxide fuel cell (SOFC) operating under open and closed-circuit conditions. Catal Today 127:337–346CrossRefGoogle Scholar
  53. 53.
    Wagman DD, Kilpatrick JE, Taylor WJ, Pitzer KS, Rossini FD (1945) Heats , free energies , and equilibrium constants of some reactions involving O2, H2, H2O, C, CO, CO2, and CH4. J Res Natl Bur Stand 34:143CrossRefGoogle Scholar
  54. 54.
    Zhan Z, Kobsiriphat W, Wilson JR, Pillai M, Kim I, Barnett SA (2009) Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle. Energy Fuel 23:3089–3096CrossRefGoogle Scholar
  55. 55.
    Kumari N, Tiwari PK, Haider MA, Basu S (2017) Electrochemical performance of infiltrated cu-GDC and cu-PDC cathode for CO2 electrolysis in a solid oxide cell. ECS Trans 78:3329–3337CrossRefGoogle Scholar
  56. 56.
    Singh V et al (2016) Influence of fabrication routes on microstructure and electrochemical performance of Ni–GDC cathode for high temperature CO2 reduction in solid oxide electrolysis cells. J Electrochem Soc 163:3084CrossRefGoogle Scholar
  57. 57.
    Yang Z, Fu Z, Zhang Y, Wu R (2010) Direct CO oxidation by lattice oxygen on Zr-doped ceria surfaces. Catal Lett 141:78CrossRefGoogle Scholar
  58. 58.
    Kuru Y, Bishop SR, Kim JJ, Yildiz B, Tuller HL (2011) Chemomechanical properties and microstructural stability of nanocrystalline Pr-doped ceria: an in situ X-ray diffraction investigation. Solid State Ionics 193(1):1–4CrossRefGoogle Scholar
  59. 59.
    Nolan M (2011) Enhanced oxygen vacancy formation in ceria(111) and (110) surfaces doped with divalent cations. J Mater Chem 21:9160CrossRefGoogle Scholar
  60. 60.
    Hay PJ, Martin RL, Uddin J, Scuseria GE (2006) Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional. J Chem Phys 125:34712CrossRefGoogle Scholar
  61. 61.
    Wang S, Kobayashi T, Dokiya M, Hashimoto T (2000) Electrical and ionic conductivity of Gd-doped ceria. J Electrochem Soc 147:3606CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations