, Volume 25, Issue 2, pp 429–435 | Cite as

Three-dimensional carboxymethyl cellulose sponge-like ultralight electrode for lithium-ion batteries

  • Xiaowu Yang
  • Yan Xin
  • Xing Zhang
  • Xia Wang
  • Chen WangEmail author
Original Paper


In order to reduce the weight of the lithium-ion battery and increase its capacity, the copper foil as a conventional current collector is completely abandoned, and a novel ultralight negative electrode prepared by freeze-drying technology and carboxymethyl cellulose (CMC) has a 3D sponge-like structure. Further, graphite is employed as an electrode material. X-ray diffraction and Raman spectroscopy show no damage to the graphite structure during the formation of the carbon sponge. The thin layer of acetylene black deposit acts as a current collector and allows graphite to maximize contact with the electrolyte. In the half-cell experiment, this new 3D CMC spongy ultralight collector-free electrode achieves considerable cyclical stability. This paper describes innovative and fairly simple techniques to fully realize 3D CMC sponge-like current collector applied in lithium-ion battery, rather than relatively heavy and expensive copper foil, thereby improving the weight and volumetric energy density of such advanced batteries.


3D sponge-like ultralight electrode Lithium-ion batteries Anode materials 


Funding information

This study received financial support from the Natural Science Foundation of China (51803114) and the Scientific Research Fund of Shaanxi University of Science and Technology (2016QNBJ-15), the Innovative Talents Promotion Plan in Shaanxi Province (2018KJXX-023), the Natural Science Foundation of Shaanxi Province in China (2017JM2017), and the Scientific Research Foundation of Shaanxi Provincial Education Department (18JS013).


  1. 1.
    Nowak AP, Wicikowska B, Trzciński K, Lisowska-Oleksiak A (2014) Determination of chemical diffusion coefficient of lithium ions in ceramics derived from pyrolysed poly (1, 2-dimethylsilazane) and starch [J]. Procedia Eng 98:8–13CrossRefGoogle Scholar
  2. 2.
    Chockla AM, Harris JT, Akhavan VA, Bogart TD, Holmberg VC, Steinhagen C, Mullins CB, Stevenson KJ, Korgel BA (2011) Silicon nanowire fabric as a lithium ion battery electrode material [J]. J Am Chem Soc 133(51):20914–20921CrossRefGoogle Scholar
  3. 3.
    Yamagata M, Nishigaki N, Nishishita S, Matsui Y, Sugimoto T, Kikuta M, Higashizaki T, Kono M, Ishikawa M (2013) Charge–discharge behavior of graphite negative electrodes in bis (fluorosulfonyl) imide-based ionic liquid and structural aspects of their electrode/electrolyte interfaces [J]. Electrochim Acta 110:181–190CrossRefGoogle Scholar
  4. 4.
    Wang JS, Liu P, Sherman E, Verbrugge M, Tataria H (2011) Formulation and characterization of ultra-thick electrodes for high energy lithium-ion batteries employing tailored metal foams [J]. J Power Sources 196(20):8714–8718CrossRefGoogle Scholar
  5. 5.
    Yue Y, Liang H (2018) 3D current collectors for lithium-ion batteries: a topical review [J]. Small Methods 2:1800056CrossRefGoogle Scholar
  6. 6.
    Wang W, Kumta PN (2010) Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes [J]. ACS Nano 4(4):2233–2241CrossRefGoogle Scholar
  7. 7.
    Kim YS, Ahn HJ, Nam SH, Lee SH, Shim HS, Kim WB (2008) Honeycomb pattern array of vertically standing core-shell nanorods: its application to Li energy electrodes [J]. Appl Phys Lett 93(10):103104CrossRefGoogle Scholar
  8. 8.
    Dimesso L, Jacke S, Spanheimer C, Jaegermann W (2011) Investigation on 3-dimensional carbon foams/LiFePO 4 composites as function of the annealing time under inert atmosphere [J]. J Alloys Compd 509(9):3777–3782CrossRefGoogle Scholar
  9. 9.
    Zhang S, Xing Y, Jiang T, du Z, Li F, He L, Liu W (2011) A three-dimensional tin-coated nanoporous copper for lithium-ion battery anodes [J]. J Power Sources 196(16):6915–6919CrossRefGoogle Scholar
  10. 10.
    Xiao X, Liu P, Wang JS, Verbrugge MW, Balogh MP (2011) Vertically aligned graphene electrode for lithium ion battery with high rate capability [J]. Electrochem Commun 13(2):209–212CrossRefGoogle Scholar
  11. 11.
    Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K (2010) Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density [J]. Adv Mater 22(35):E235–E241CrossRefGoogle Scholar
  12. 12.
    Béguin F, Presser V, Balducci A, Frackowiak E (2014) Supercapacitors: carbons and electrolytes for advanced supercapacitors (Adv. Mater. 14/2014)[J]. Adv Mater 26(14):2283–2283CrossRefGoogle Scholar
  13. 13.
    Evanoff K, Khan J, Balandin AA, Magasinski A, Ready WJ, Fuller TF, Yushin G (2012) Towards ultrathick battery electrodes: aligned carbon nanotube–enabled architecture [J]. Adv Mater 24(4):533–537CrossRefGoogle Scholar
  14. 14.
    Li Y, Fu ZY, Su BL (2012) Hierarchically structured porous materials for energy conversion and storage [J]. Adv Funct Mater 22(22):4634–4667CrossRefGoogle Scholar
  15. 15.
    Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures [J]. Adv Mater 21(25–26):2664–2680CrossRefGoogle Scholar
  16. 16.
    Guo B, Wang X, Fulvio PF, Chi M, Mahurin SM, Sun XG, Dai S (2011) Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries [J]. Adv Mater 23(40):4661–4666CrossRefGoogle Scholar
  17. 17.
    Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability [J]. Adv Mater 24(15):2047–2050CrossRefGoogle Scholar
  18. 18.
    Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors [J]. Adv Mater 25(17):2474–2480CrossRefGoogle Scholar
  19. 19.
    Wu ZS, Ren W, Xu L, Li F, Cheng HM (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries [J]. ACS Nano 5(7):5463–5471CrossRefGoogle Scholar
  20. 20.
    Mukherjee R, Thomas AV, Datta D, Singh E, Li J, Eksik O, Shenoy VB, Koratkar N (2014) Defect-induced plating of lithium metal within porous graphene networks [J]. Nat Commun 5:3710CrossRefGoogle Scholar
  21. 21.
    Rolison DR, Long JW, Lytle JC, Fischer AE, Rhodes CP, McEvoy TM, Bourg ME, Lubers AM (2009) Multifunctional 3D nanoarchitectures for energy storage and conversion [J]. Chem Soc Rev 38(1):226–252CrossRefGoogle Scholar
  22. 22.
    Roberts M, Johns P, Owen J, Brandell D, Edstrom K, el Enany G, Guery C, Golodnitsky D, Lacey M, Lecoeur C, Mazor H, Peled E, Perre E, Shaijumon MM, Simon P, Taberna PL (2011) 3D lithium ion batteries—from fundamentals to fabrication [J]. J Mater Chem 21(27):9876–9890CrossRefGoogle Scholar
  23. 23.
    Tang W, Hou Y, Wang F, Liu L, Wu Y, Zhu K (2013) LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries [J]. Nano Lett 13(5):2036–2040CrossRefGoogle Scholar
  24. 24.
    Qu Q, Fu L, Zhan X et al (2011) Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries [J]. Energy Environ Sci 4(10):3985–3990CrossRefGoogle Scholar
  25. 25.
    Deng M, Qi J, Li X, Xiao Y, Yang L, Yu X, Wang H, Yuan B, Gao Q (2018) MoC/C nanowires as high-rate and long cyclic life anode for lithium ion batteries [J]. Electrochim Acta 277:205–210CrossRefGoogle Scholar
  26. 26.
    Sun W, Hu R, Liu H, Zeng M, Yang L, Wang H, Zhu M (2014) Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries [J]. J Power Sources 268:610–618CrossRefGoogle Scholar
  27. 27.
    Fukuda K, Kikuya K, Isono K et al (1997) Foliated natural graphite as the anode material for rechargeable lithium-ion cells [J]. J Power Sources 69(1):165–168CrossRefGoogle Scholar
  28. 28.
    Xing T, Li LH, Hou L, Hu X, Zhou S, Peter R, Petravic M, Chen Y (2013) Disorder in ball-milled graphite revealed by Raman spectroscopy [J]. Carbon 57:515–519CrossRefGoogle Scholar
  29. 29.
    Gao X, Sha Y, Lin Q, Cai R, Tade MO, Shao Z (2015) Combustion-derived nanocrystalline LiMn 2 O 4 as a promising cathode material for lithium-ion batteries [J]. J Power Sources 275:38–44CrossRefGoogle Scholar
  30. 30.
    Naji A, Ghanbaja J, Willmann P, Humbert B, Billaud D (1996) First characterization of the surface compounds formed during the reduction of a carbonaceous electrode in LiClO 4-ethylene carbonate electrolyte [J]. J Power Sources 62(1):141–143CrossRefGoogle Scholar
  31. 31.
    Fang Y, Lv Y, Che R, Wu H, Zhang X, Gu D, Zheng G, Zhao D (2013) Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage.[J]. J Am Chem Soc 135(4):1524–1530CrossRefGoogle Scholar
  32. 32.
    Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control [J]. Nat Nanotechnol 7(5):310–315CrossRefGoogle Scholar
  33. 33.
    Sun H, Xin G, Hu T, Yu M, Shao D, Sun X, Lian J (2014) High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries.[J]. Nat Commun 5(7):4526CrossRefGoogle Scholar
  34. 34.
    Song H, Li N, Cui H, Wang C (2014) Enhanced storage capability and kinetic processes by pores- and hetero-atoms- riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes [J]. Nano Energy 4(3):81–87CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaowu Yang
    • 1
  • Yan Xin
    • 1
  • Xing Zhang
    • 2
  • Xia Wang
    • 1
  • Chen Wang
    • 1
    Email author
  1. 1.Shaanxi key Laboratory of Chemical Additives for IndustryShaanxi University of Science & TechnologyXi’anPeople’s Republic of China
  2. 2.Research Institute of Petroleum Engineering TechnologyShengli Oilfield Company, SinopecDongyingPeople’s Republic of China

Personalised recommendations