, Volume 25, Issue 7, pp 3223–3245 | Cite as

Complex impedance, FT-Raman, and photoluminescence spectroscopic studies of pure and L-phenylalanine doped ammonium dihydrogen phosphate single crystals: the correlation with hydrogen bonding defect

  • J.H. JoshiEmail author
  • G.M. Joshi
  • M.J. Joshi
  • K.D. ParikhEmail author
Original Paper


Ammonium dihydrogen phosphate (ADP) is an important nonlinear optical (NLO) material used for electro-optical applications. The aromatic side chain contained dopant like L-phenylalanine causes defect in ADP. The pure and L-phenylalanine doped ADP crystals are grown using slow solvent evaporation technique at room temperature. The Powder XRD spectra suggest tetragonal crystal system and slit shifting of peak. The FT-Raman shows strong absorption peak at 922 cm−1 due to v1 group symmetry of P - OH for all grown crystals without shifting indicating the single phase nature of all the crystals. The photoluminescence study suggests the presence of defects in doped crystals compared to the pure one due to increase of Stokes shift and vibrational energy relaxation phenomena. The dielectric constant and dielectric loss have shown the usual behavior with respect to frequency and temperature. The calculated electro-optic coefficient is found to be in accordance with dielectric constant. The protonic conduction is prevailing for electric transport, and from Jonscher’s plot, the correlation barrier hopping (CBH) is confirmed. The Nyquist plot and modulus spectra of pure ADP show the presence of grain and grain boundary while the same plots for L-phenylalanine doped ADP show the presence of grain only. The stretch exponent exhibits non-Debye-type relaxation.


Dihydrogen phosphate Raman spectroscopy Photoluminescence Protonic conductivity Impedance spectroscopy 



The authors acknowledge the encouragement and keen interest from Prof. Hiren H. Joshi, H.O.D. Physics, Saurashtra University, Rajkot. One of the authors (JHJ) is highly thankful to Mr. S.G.Khandelwal, Deputy Director, Forensic Science Laboratory, Ahmedabad, for allowing him to carry out research activity.

Funding information

The authors are thankful to UGC, New Delhi, for funding under DRS-SAP and DST, New Delhi, for FIST.


  1. 1.
    Sun C, Xue D (2014) Crystallization behaviours of KDP and ADP. Opt Mater 35:1966–1969CrossRefGoogle Scholar
  2. 2.
    Rashkovich L (1991) KDP—family single crystals. Hilger, BristolGoogle Scholar
  3. 3.
    Joshi JH, Kalainathan S, Kanchan DK, Joshi MJ, Parikh KD (2017) Effect of L-threonine on growth and properties of ammonium dihydrogen phosphate crystal. Arab J Chem.
  4. 4.
    Xu D, Xue D (2006) Chemical bond analysis of the crystal growth of KDP and ADP. J Cryst Growth 286:108–113CrossRefGoogle Scholar
  5. 5.
    Ben Brahim F, Bulou A (2013) Growth and spectroscopy studies of ADP single crystals with l-glutamine and l-cysteine amino acids. Vib Spectrosc 65:176–185CrossRefGoogle Scholar
  6. 6.
    Ben Brahim F, Bulou A (2011) Growth and spectroscopy studies of ADP single crystals with l-proline and l-arginine amino acids. Mater Chem Phys 130:24–32CrossRefGoogle Scholar
  7. 7.
    Hasmuddin M, Singh P, Sakir M, Abdullah MM, Vijayan N, Ganesh V, Wahab MA (2014) Study of pure and L-tartaric acid doped ammonium dihydrogen phosphate single crystals: a novel nonlinear optical noncentrosymmetric crystal. Mater Chem Phys 144:293–300CrossRefGoogle Scholar
  8. 8.
    Gfroerer TH (2006) Photoluminescence in analysis of surface and interface: encyclopedia of analytical chemistry. Wiley, pp 9209–9231Google Scholar
  9. 9.
    Gispert JR (2008) Coordination chemistry. Wiley, p 483Google Scholar
  10. 10.
    Kitai A (2008) Luminescent material and application. Wiley, p 32Google Scholar
  11. 11.
    Hiroshi F, Straub JE (2005) Vibrational energy relaxation in proteins. PNAS 102:6726–6731CrossRefGoogle Scholar
  12. 12.
    Takmakoff A (2009) Lecture notes on vibrational relaxation, MIT Department of Chemistry. Introduction of Quantum Mechanics II.Google Scholar
  13. 13.
    Ogorodnikova IN, Kirm M, Pustovarov VAL (2007) Luminescence of hydrogen bonded crystals. Radiat Meas 42:746–750CrossRefGoogle Scholar
  14. 14.
    Voronov AP, Salo VI, Puzikov M, Tkachenko VF, Vydaoe YT (2006) Potassium and ammonium dihydrogen phosphate activated with thallium: growth and luminescence and scintillation properties. Cryst Rep 51:696–701CrossRefGoogle Scholar
  15. 15.
    Joshi JH, Joshi GM, Joshi MJ, Jethva HO, Parikh KD (2018) Raman, photoluminescence and a.c.electrical studies of pure and L-serine doped ammonium dihydrogen phosphate single crystals: an understanding of defect chemistry in hydrogen bonding. New J Chem 42:17227–17249Google Scholar
  16. 16.
    Xue D, Kitamura K (2002) Dielectric characterization of the defect concentration in lithium niobate single crystals. Solid State Commun 122:537–541CrossRefGoogle Scholar
  17. 17.
    Udapa KS, Rao PM, Aithal S, Bhat AP, Avasthi DK (1997) Effect of heavy-ion irradiation on dielectric constant and electrical conductivity of doped and undoped nonlinear substance. Bull Mater Sci 20:1067–1077Google Scholar
  18. 18.
    Shakir M, Singh BK, Gaur RK, Kumar B, Bhagavannarayanan G, Wahab MA (2009) Dielectric behavior and AC electrical conductivity analysis of ZnSe chalcogenide nanoparticles. Chalco Lett 6:655–660Google Scholar
  19. 19.
    Kanagasekaran T, Mythili P, Kumar B, Gopalakrishnana R (2010) Effect of ion irradiation on the M-nitroaniline single crystals. Nucl Inst Methods Phys Res B 268:36–41CrossRefGoogle Scholar
  20. 20.
    Shih CC, Yadiv A (1982) A theoretical model of the linear electro-optic effect. J Phys C Solid State Phys 15:825–846CrossRefGoogle Scholar
  21. 21.
    Li Y, Li J, Zhou Z, Guo R, Bhalla A (2011) Frequency dependant electro-optic properties of potassium lithium tantalate niobate single crystal. Ferro Elect 425:82–89CrossRefGoogle Scholar
  22. 22.
    Funke K (1993) Jump relaxation in solid electrolytes. Prog Solid State Chem 22:111–195CrossRefGoogle Scholar
  23. 23.
    Joshi JH, Kanchan DK, Jethva HO, Joshi MJ, Parikh KD (2018) Dielectric relaxation, protonic defect, conductivity mechanism, complex impedance and modulus spectroscopic studies of pure and L-threonine doped ammonium dihydrogen phosphate. Ionics 24:1995–2016CrossRefGoogle Scholar
  24. 24.
    Jonscher AK (1997) The ‘universal’ dielectric response. Nature 267:673–679CrossRefGoogle Scholar
  25. 25.
    Mollah S, Som KK, Bose BK, Chaudhuri J (1993) A.C. conductivity in Bi4Sr3Ca3CuyOx (y=0.5) and Bi4Sr3Ca3-1LizCu4Ox (z = 0.1–1.0) semiconducting oxide glasses. J Appl Phys 74:931–937CrossRefGoogle Scholar
  26. 26.
    Gudmundsson JT, Svavarsson HG, Gudjonesson S, Gislason HP (2003) Frequency-dependant conductivity in lithium-diffused and annealed GaAs. Phys B 340:324–328CrossRefGoogle Scholar
  27. 27.
    Pike GE (1972) AC conductivity of scandium oxide and a new hopping model for conductivity. Phys Rev B 6:1572–1580CrossRefGoogle Scholar
  28. 28.
    Hayat K, Rafiq MA, Durrani SK, Hasan MM (2011) Impedance spectroscopy and investigation of conduction mechanism in BaMnO3 nanorods. Phys B 406:309–314CrossRefGoogle Scholar
  29. 29.
    Kahouli A, Sylvestre A, Jomni F, Yangui B, Legrand J (2012) Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylence C thin films. J Phys Chem A 116(3):1051–1058CrossRefPubMedGoogle Scholar
  30. 30.
    Yakuphanoglu F, Aydogdu Y, Schatzscneider U, Rentscheter E (2003) DC and AC conductivity and dielectric properties of the metal-radical compound: aqua [bis (2-dimethylaminomethyl-4-NIT-phenolate)] copper(II). Solid State Commun 128:63–67CrossRefGoogle Scholar
  31. 31.
    Afifi MA, Berkheet AE, Elwahabb E, Atvia HE (2001) AC conductivity and dielectric properties of amorphous In2Se3 films. Vacuum 61(1):9–17CrossRefGoogle Scholar
  32. 32.
    Bechir MB, Karoui K, Tabellout M, Guidara K, Rhaiem AB (2015) Dielectric relaxation, modulus behaviour and thermodynamic properties in [N (CH3)3H]2ZnCl2. Phase Transit:1–17Google Scholar
  33. 33.
    Sinclair DC (1995) Characterization of electro- materials using ac impedance spectroscopy. Bol Soc Esp Cerem Vidrio 34:55–65Google Scholar
  34. 34.
    Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiments and applications. Wiley, New YorkCrossRefGoogle Scholar
  35. 35.
    Joshi JH, Kanchan DK, Joshi MJ, Jethva HO, Parikh KD (2017) Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater Res Bull 93:63–73CrossRefGoogle Scholar
  36. 36.
    Costa MM, Pires GFM, Terrozo AJ, Graca MPF, Somba ASB (2011) Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped Bi2O3. J Appl Phys 110:1–8CrossRefGoogle Scholar
  37. 37.
    Bharathi KK, Marukandeyulu G, Ramana CV (2011) Impedance spectroscopic characterization of Sm and Ho doped Ni ferrites. J Elect Chem Soc 158(3)Google Scholar
  38. 38.
    Sen S, Choudhary RNP (2004) Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater Chem Phys 87:256–263CrossRefGoogle Scholar
  39. 39.
    Macedo PB, Maynihan CT, Bose R (1972) Role of ionic diffusion in polarization in vitreous ionic conductor. Phys Chem Glasses 13:171–176Google Scholar
  40. 40.
    Barik SK, Choudhary RNP, Singh AK (2011) AC impedance spectroscopy and conductivity studies of Ba0.8Sr0.2TiO3 ceramics. Adv Mater Lett 2(6):419–424CrossRefGoogle Scholar
  41. 41.
    Dickson PK (1990) Specific- heat spectroscopy and dielectric susceptibility measurement of solol at the glass transition. Phys Rev B 42:8179–8186CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSaurashtra UniversityRajkotIndia
  2. 2.Department of Engineering Physics and Engineering MaterialsInstitute of Chemical TechnologyMarathwada JalnaIndia
  3. 3.Department of PhysicsShri M.P.Shah Arts & Science CollegeSurendranagarIndia

Personalised recommendations