, Volume 25, Issue 3, pp 1105–1115 | Cite as

Synthesis and characterization of Ru doped NaNi0.5Mn0.3Ti0.2O2 cathode material with improved electrochemical performance for sodium-ion batteries

  • Mingzhe Leng
  • Jianqiang BiEmail author
  • Weili WangEmail author
  • Rui Liu
  • Chi Xia
Original Paper


In this research, a novel layered O3-type NaNi0.48Mn0.3Ti0.2Ru0.02O2 is fabricated by using solid-state method for sodium-ion batteries. Sodium-ion battery (SIB) can be a promising alternative to the current lithium-ion battery (LIB) technology due to the shortage of lithium in nature and higher cost. As a promising cathode material, NaNi0.48Mn0.3Ti0.2Ru0.02O2 electrode shows a high reversible capacity of 155.3 mA h g−1 at 0.05 C (12 mA g−1) in the range of 1.5–4.5 V and exhibits a favorable coulombic efficiency. DFT calculation and X-ray diffraction, Raman, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy analysis are introduced to reveal the effects of substitution of Ru4+ for Ni2+ including the decreasing electronic localization, more stable material structure, wider sodium-ion diffusion channels and good diffusion coefficient of Na. The doping of Ru has paved a new way to enhance the electrochemical performances of O3-type cathode materials for SIBs.


Sodium-ion batteries Transition metal oxide Cathode materials O3 phase Ru doping 



This work was supported by the Science and Technology Development Project of Shandong Province (2016GGX102003, 2017GGX20105), the Natural Science Foundation of Shandong Province (ZR2017BEM032), China Postdoctoral Science Foundation (2018M632673), and the Fundamental Research Funds of Shandong University (2015TB016, 2016JC009).


  1. 1.
    Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1:2204–2219CrossRefGoogle Scholar
  2. 2.
    Myung S-T, Maglia F, Park K-J, Yoon CS, Lamp P, Kim S-J, Sun Y-K (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2:196–223CrossRefGoogle Scholar
  3. 3.
    Li W, Song B, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46:3006–3059CrossRefGoogle Scholar
  4. 4.
    Ni J, Fu S, Yuan Y, Ma L, Jiang Y, Li L, Lu J (2018) Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv Mater 30:1704337–1704344CrossRefGoogle Scholar
  5. 5.
    Fang C, Huang Y, Zhang W, Han J, Deng Z, Cao Y, Yang H (2016) Routes to high energy cathodes of sodium-ion batteries. Adv Energy Mater 6:1501727–1501745CrossRefGoogle Scholar
  6. 6.
    Hwang J-Y, Myung S-T, Sun Y-K (2018) Quaternary transition metal oxide layered framework: O3-type Na[Ni0.32Fe0.13Co0.15Mn0.40]O2 cathode material for high-performance sodium-ion batteries. J Phys Chem C 122:13500–13507CrossRefGoogle Scholar
  7. 7.
    Sun L, Xie Y, Liao X-Z, Wang H, Tan G, Chen Z, Ren Y, Gim J, Tang W, He Y-S, Amine K, Ma Z-F (2018) Insight into ca-substitution effects on O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries application. Small 14:1704523–1704530CrossRefGoogle Scholar
  8. 8.
    Cao M, Wang T, Shadike Z, Nam K, Zhou Y, Fu Z (2018) Reversible multi-Electron transfer of Cr2.8+/Cr4.4+ in O3-type layered Na0.66Fe1/3Cr1/3Ti1/3O2 for sodium-ion batteries. J Electrochem Soc 165:A565–A574CrossRefGoogle Scholar
  9. 9.
    Sathiya M, Ramesha K, Rousse G, Foix D, Gonbeau D, Prakash AS, Doublet ML, Hemalatha K, Tarascon JM (2013) High performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem Mater 25:1121–1131CrossRefGoogle Scholar
  10. 10.
    Xu Y, Hu E, Yang F, Corbett J, Sun Z, Lyu Y, Yu X, Liu Y, Yang XQ, Li H (2016) Structural integrity – searching the key factor to supress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques. Nano Energy 28:164–171CrossRefGoogle Scholar
  11. 11.
    Mori D, Sakaebe H, Shikano M, Kojitani H, Tatsumi K, Inaguma Y (2011) Synthesis, phase relation and electrical and electrochemical properties of ruthenium-substituted Li2MnO3 as a novel cathode material. J Power Sources 196:6934–6938CrossRefGoogle Scholar
  12. 12.
    Su N, Lyu Y, Guo B (2018) Electrochemical and in-situ X-ray diffraction studies of Na1.2Ni0.2Mn0.2Ru0.4O2 as a cathode material for sodium-ion batteries. Electrochem Commun 87:71–75CrossRefGoogle Scholar
  13. 13.
    Tamaru M, Wang X, Okubo M, Yamada A (2013) Layered Na2RuO3 as a cathode material for Na-ion batteries. Electrochem Commun 33:23–26CrossRefGoogle Scholar
  14. 14.
    Song S, Kotobuki M, Zheng F, Li Q, Xu C, Wang Y, Li WDZ, Hu N, Lu L (2017) Na-rich layered Na2Ru0.95Zr0.05O3 cathode material for Na-ion batteries. J Power Sources 342:685–689CrossRefGoogle Scholar
  15. 15.
    Qiao Y, Guo S, Zhu K, Liu P, Li X, Jiang K, Sun CJ, Chen M, Zhou H (2018) Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide. Energy Environ Sci 11:299–305CrossRefGoogle Scholar
  16. 16.
    Wang PF, Yao HR, Liu XY, Zhang JN, Gu L, Yu XQ, Yin YX, Guo YG (2017) Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries. Adv Mater 29:1700210–1700217CrossRefGoogle Scholar
  17. 17.
    Yu H, Guo S, Zhu Y, Ishida M, Zhou H (2014) Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries. Chem Commun 50:457–459CrossRefGoogle Scholar
  18. 18.
    Takahashi R, Wang H, Lewis JP (2007) Electronic structures and conductivity in peptide nanotubes. J Phys Chem B 111:9093–9098CrossRefGoogle Scholar
  19. 19.
    Wang Y, Xiao R, Hu YS, Avdeev M, Chen L (2015) P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat Commun 6:6954–6963CrossRefGoogle Scholar
  20. 20.
    Yoda Y, Kubota K, Isozumi H, Horiba T, Komaba S (2018) Poly-ɤ-glutamate binder to enhance electrode performances of P2-Na2/3Ni1/3Mn2/3O2 for Na-ion batteries. ACS Appl Mater Interfaces 10:10986–10997CrossRefGoogle Scholar
  21. 21.
    Carlier D, Cheng JH, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang BJ, Delmas C (2011) The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans 40:9306–9312CrossRefGoogle Scholar
  22. 22.
    Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980CrossRefGoogle Scholar
  23. 23.
    Zhang C, Gao R, Zheng L, Hao Y, Liu X (2018) New insights into the roles of mg in improving the rate capability and cycling stability of O3-NaMn0.48Ni0.2Fe0.3Mg0.02O2 for sodium-ion batteries. ACS Appl Mater Interfaces 10:10819–10827CrossRefGoogle Scholar
  24. 24.
    Li ZY, Zhang J, Gao R, Zhang H, Zheng L, Hu Z, Liu X (2016) Li-substituted co-free layered P2/O3 biphasic Na0.67Mn0.55Ni0.25Ti0.2-xLixO2 as high-rate capability cathode materials for sodium ion batteries. J Phys Chem C 120:9007–9016CrossRefGoogle Scholar
  25. 25.
    Yuan DD, Wang YX, Cao YL, Ai XP, Yang HX (2015) Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Appl Mater Interfaces 7:8585–8591CrossRefGoogle Scholar
  26. 26.
    Iliev MN, Litvinchuk AP, Meng RL, Cmaidalka J, Chu CW (2003) Raman phonons and ageing-related disorder in NaxCoO2. Physica C 402:239–242CrossRefGoogle Scholar
  27. 27.
    Yoncheva M, Stoyanova R, Zhecheva E, Kuzmanova E, Sendovavassileva M, Nihtianova D, Carlier D, Guignard M, Delmas C (2012) Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1−yFeyO2 (y = 0, 1/3, 2/3). J Mater Chem 22:23418–23427CrossRefGoogle Scholar
  28. 28.
    Yang HX, Xia Y, Shi YG, Tian HF, Xiao RJ, Liu X, Liu YL, Li JQ (2006) Raman spectroscopy study of α-, β-, γ− NaxCoO2 and γ− ( Ca, Sr )x CoO2. Phys Rev B 74:094301–094307CrossRefGoogle Scholar
  29. 29.
    Karan NK, Saavedraarias JJ, Pradhan DK, Melgarejo R, Kumar A, Thomas R, Katiyar RS (2008) Structural and electrochemical characterizations of solution derived LiMn0.5Ni0.5O2 as positive electrode for li-ion rechargeable batteries. Electrochem Solid-State Lett 11:A135–A139CrossRefGoogle Scholar
  30. 30.
    Julien CM, Massot M (2003) Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel. Mater Sci Eng B 108:179–186CrossRefGoogle Scholar
  31. 31.
    Wu X, Yong JP, Ryu KS, Lee YG, Chang SH (2004) Electrochemical properties of layered Li–Cr–Mn oxides prepared at high temperature. Solid State Ionics 169:145–150CrossRefGoogle Scholar
  32. 32.
    Wu X, Guo J, Wang D, Zhong G, Mcdonald MJ, Yang Y (2015) P2-type Na0.66 Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. J Power Sources 281:18–26CrossRefGoogle Scholar
  33. 33.
    Peng M, Zhang D, Zheng L, Wang X, Lin Y, Xia D, Sun Y, Guo G (2017) Hierarchical Ru-doped sodium vanadium fluorophosphates hollow microspheres as a cathode of enhanced superior rate capability and ultralong stability for sodium-ion batteries. Nano Energy 31:64–73CrossRefGoogle Scholar
  34. 34.
    Zhang W, Mao J, Pang WK, Guo Z, Chen Z (2017) Large-scale synthesis of ternary Sn5SbP3/C composite by ball milling for superior stable sodium-ion battery anode. Electrochim Acta 235:107–113CrossRefGoogle Scholar
  35. 35.
    Berthelot R, Carlier D, Delmas C (2010) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10:74–80CrossRefGoogle Scholar
  36. 36.
    Yabuuchi N, Yano M, Yoshida H, Kuze S, Komaba S (2013) Synthesis and electrode performance of O3-type NaFeO2-NaNi1/2Mn1/2O2 solid solution for rechargeable sodium batteries. J Electrochem Soc 160:A3131–A3137CrossRefGoogle Scholar
  37. 37.
    Liu Z, Lee JY, Lindner HJ (2001) Effects of conducting carbon on the electrochemical performance of LiCoO2 and LiMn2O4 cathodes. J Power Sources 97–98:361–365CrossRefGoogle Scholar
  38. 38.
    Kawaoka H, Hibino M, Zhou H, Honma I (2005) Optimization of Sonochemical synthesis condition of manganese oxide/acetylene black nanocomposite for high power lithium-ion batteries. J Electrochem Soc 152:669400–669408CrossRefGoogle Scholar
  39. 39.
    Lee DH, Xu J, Meng YS (2013) An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys 15:3304–3312CrossRefGoogle Scholar
  40. 40.
    Stoyanova R, Carlier D, Sendova-Vassileva M, Yoncheva M, Zhecheva E, Nihtianova D, Delmas C (2010) Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2. J Solid State Chem 183:1372–1379CrossRefGoogle Scholar
  41. 41.
    Wang Y, Yang Z, Qian Y, Gu L, Zhou H (2015) New insights into improving rate performance of lithium-rich cathode material. Adv Mater 27:3915–3920CrossRefGoogle Scholar
  42. 42.
    Rudola A, Saravanan K, Mason C, Balaya P (2013) Na2Ti3O7: an intercalation based anode for sodium-ion battery applications. J Mater Chem A 1:2653–2662CrossRefGoogle Scholar
  43. 43.
    Li Z, Du F, Bie X, Zhang D, Cai Y, Cui X, Wang C, Chen G, Wei Y (2010) Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS. J Phys Chem C 114:22751–22757CrossRefGoogle Scholar
  44. 44.
    Xie J, Imanishi N, Matsumura T, Hirano A, Takeda Y, Yamamoto O (2008) Orientation dependence of Li–ion diffusion kinetics in LiCoO2 thin films prepared by RF magnetron sputtering. Solid State Ionics 179:362–370CrossRefGoogle Scholar
  45. 45.
    Chen Q, Qiao X, Wang Y, Zhang T, Peng C, Yin W, Liu L (2012) Electrochemical performance of Li3−xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries. J Power Sources 201:267–273CrossRefGoogle Scholar
  46. 46.
    Shaju KM (2004) Influence of Li-ion kinetics in the cathodic performance of layered Li ( NiCoMn )O. J Electrochem Soc 151:A1324–A1332CrossRefGoogle Scholar
  47. 47.
    Ho C, Raistrick ID, Huggins RA (1980) Application of AC techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–350CrossRefGoogle Scholar
  48. 48.
    Upreti S, Chernova NA, Xiao J, Miller JK, Yakubovich OV, Cabana J, Grey CP, Chevrier VL, Ceder G, Musfeldt JL (2015) Crystal structure, physical properties, and electrochemistry of copper substituted LiFePO4 single crystals. Chem Mater 24:166–173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and EngineeringShandong UniversityJinanChina
  2. 2.State Key Lab of Nonferrous Metals and ProcessesGeneral Research Institute for Nonferrous MetalsBeijingChina
  3. 3.Institute of Shandong Non-Metallic MaterialsJinanChina

Personalised recommendations