, Volume 25, Issue 7, pp 3247–3258 | Cite as

A comparative and correlation structure-Ac conductivity analysis of doped 1%Eu3+ and undoped ceramic of Li2BaP2O7

  • Mariem BeltaifEmail author
  • Marwa Krichen
  • Makram Megdiche
  • Mohamed Dammak
Original Paper


In this work, Li2BaP2O7 doped 1% Eu3+ was prepared by a solid-state reaction method and characterized by X-ray diffraction technique, IR, and impedance spectroscopy. Rietveld refinement of the X-ray diffraction pattern suggests the formation of the single-phase desired compound with monoclinic structure at room temperature. Electrical properties were studied using complex impedance spectroscopy in the frequency range of 200 Hz–5 MHz and temperature range of 598–724 K. The temperature dependence of the bulk and grain boundaries’ conductivity was found to obey the Arrhenius law with activation energies Eg = 0.79 eV and Egb = 1.85 eV respectively. Temperature dependence of the power law exponent s strongly suggests that tunneling of large polaron is the dominant transport process. The obtained results are compared with the undoped Li2BaP2O7 sample and correlated with structural analysis. Doping pyrophosphate compound by Eu3+ presents better conductivity and electrical properties.


Eu3+ Conduction mechanism AC conductivity Impedance spectroscopy 



  1. 1.
    Zhong J, Liang H, Han B, Su Q, Tao Y (2008) NaGd(PO3)4: Tb 3+ A new promising green phosphor for PDPs application. Chem Phys Lett 453:192–196CrossRefGoogle Scholar
  2. 2.
    Zhu J, Cheng WD, Wu DS, Zhang H, Gong YJ, Tong HN, Zhao D (2008) Crystal and band structures, and optical characterizations of sodium rare earth phosphates NaLnP2O7 and NaLn (PO3)4(Ln = Ce, Eu). Alloys Compd 454:419–426CrossRefGoogle Scholar
  3. 3.
    Chipaux R, Cribier M, Dujardin C, Garnier N, Guerassimova N, Mallet J, Meyer JP, Pedrini C, Petrosyan AG (2002) Ytterbium-based scintillators, a new class of inorganic scintillators for solar neutrino spectroscopy. Nucl Instrum Methods Phys Res A 486:228–233CrossRefGoogle Scholar
  4. 4.
    Ferhi M, Horchani-Naifer K, Ferid M (2008) Hydrothermal synthesis and photoluminescence of the monophosphate LaPO4:Eu(5%). Lumin 128:1777–1782CrossRefGoogle Scholar
  5. 5.
    Ferhi M, Horchani-Naifer K, Ferid M (2009) Combustion synthesis and luminescence properties of LaPO4: Eu (5%). Rare Earths 27:182–186CrossRefGoogle Scholar
  6. 6.
    Beltaif M, Dammak M, Megdiche M, Guidara K (2016) Synthesis, optical spectroscopy and Judd–Ofelt analysis of Eu3+ doped Li 2 BaP2O7 phosphors. Lumin 177:373–379CrossRefGoogle Scholar
  7. 7.
    Krichen M, Megdiche M, Guidara K, Gargouri M (2015) AC conductivity and mechanism of conduction study of lithium barium pyrophosphate Li2BaP2O7 using impedance spectroscopy. Ionics 21:935–948CrossRefGoogle Scholar
  8. 8.
    Dridi N, Arbib E, Boukhari A, Holt EM (2002) Dilithium barium diphosphate. Acta Crystallogr C 58:74–75CrossRefGoogle Scholar
  9. 9.
    Wani JA, Dhoble NS, Kokode NS, DevaPrasadRaju B, Dhoble SJ (2014) Synthesis and luminescence property of Li2BaP2O7: Ln 3+(Ln= Eu, Sm) phosphors. Lumin 147:223–228CrossRefGoogle Scholar
  10. 10.
    Wani JA, Dhoble NS, Dhoble SJ (2012) Photoluminescence characterization of Li2BaP2O7:Ce3+ phosphor. Int J Knowl Eng 3:130–131Google Scholar
  11. 11.
    Liebertz J, Stahr S (1983) Li2BaP2O7: Einkristallzüchtung, Metrik und Raumgruppe. Z Krist 162:313–314CrossRefGoogle Scholar
  12. 12.
    Ayed B (2012) Crystal structure and ionic conductivity of AgCr2(PO4)(P2O7). C R Chimie 15:603–608CrossRefGoogle Scholar
  13. 13.
    Mac Donald JR (1987) Impedance spectroscopy: emphasizing solid materials and systems. John Wiley and Sons, New YorkGoogle Scholar
  14. 14.
    Mahamoud H, Louati B, Hlel F, Guidara K (2011) Impedance and modulus analysis of the (Na0.6Ag0.4)2PbP2O7 compound. Alloys Compd 509:6083–6089CrossRefGoogle Scholar
  15. 15.
    Megdiche M, Perrin-pellegrino C, Gargouri M (2014) Conduction mechanism study by overlapping large-polaron tunnelling model in SrNiP2O7 ceramic compound. Alloys Compd 584:209–215CrossRefGoogle Scholar
  16. 16.
    Jonscher AK (1977) The universal dielectric response. Nature 267:673–679CrossRefGoogle Scholar
  17. 17.
    Dussouze M (2005) Second harmonic generation in glasses borophosphate sodium and niobium thermal polarization. Thesis, University Bordeaux I (France)Google Scholar
  18. 18.
    Elliott SR (1977) A theory of ac conduction in chalcogenide glasses. Philos Mag B 36:1291–1304CrossRefGoogle Scholar
  19. 19.
    Pike GE (1972) AC conductivity of scandium oxide and a new hopping model for conductivity. Phys Rev B: Condens Matter 6:1572–1580CrossRefGoogle Scholar
  20. 20.
    Ghosh A, Bhattacharya S, Ghosh A (2008) Frequency dependent conductivity of cadmium vanadate glassy semiconductor. J Phys Condens Matter 20:035203–035208CrossRefGoogle Scholar
  21. 21.
    Long AR (1982) Frequency-dependent loss in amorphous semiconductors. Adv Phys 31:553–637CrossRefGoogle Scholar
  22. 22.
    Moynihan CT, Boesch LB, Laberge NL (1973) The Debye-Falkenhagen theory of electrical relaxation in glass. Phys Chem Glasses 14:122Google Scholar
  23. 23.
    Macedo PB, Moynihan CT, Bose R (1972) The role of ionic diffusion in polarization in vitreous ionic conductors. Phys Chem Glasses 13:171Google Scholar
  24. 24.
    Qian X, Gu N, Cheng Z, Yang X, Dong S (2001) Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836CrossRefGoogle Scholar
  25. 25.
    Almond DP, West AR (1983) Impedance and modulus spectroscopy of “real” dispersive conductors. Solid State Ionics 11:57–64CrossRefGoogle Scholar
  26. 26.
    Gerhardt R (1994) Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. J Phys Chem Solids 55:1491–1506CrossRefGoogle Scholar
  27. 27.
    Reau JM, Jun XY, Senegas J, Le Deit C, Poulain M (1997) Influence of network modifiers on conductivity and relaxation parameters in some series of fluoride glasses containing LiF. Solid State Ionics 95:191–199CrossRefGoogle Scholar
  28. 28.
    Bobe JM, Reau JM, Senegas J, Poulain M (1995) F ion conductivity and diffusion properties in ZrF4−based fluoride glasses with various NaF concentrations (0⩽ xNaF⩽ 0.45. Solid State Ionics 82:39–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mariem Beltaif
    • 1
    Email author
  • Marwa Krichen
    • 2
  • Makram Megdiche
    • 2
  • Mohamed Dammak
    • 1
  1. 1.Laboratoire de Physique Appliquée, Groupe de Physique des matériaux luminescents, Faculté des Sciences de Sfax, Département de Physique, BP 1171Université de SfaxSfaxTunisie
  2. 2.Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of SciencesUniversity of SfaxSfaxTunisia

Personalised recommendations