, Volume 25, Issue 7, pp 3419–3430 | Cite as

Application of micellar catalysis in ultrasensitive quantification of drotaverine hydrochloride

  • Kshiti Singh
  • Ankita Sinha
  • Rajeev JainEmail author
Original Paper


A highly effective approach was developed for the determination of drotaverine hydrochloride (DRH), based on carbon nanofiber–modified glassy carbon electrode (CNF/GCE). Electrochemical impedance spectroscopy (EIS) measurements reveal significant improvements in the conductivity and compatibility of a modified sensor in comparison to the bare GCE. Carbon nanofiber used as the modifier provides to the developed sensor a considerable enhanced electrocatalytic activity toward drotaverine reduction. Limit of detection (LOD) obtained was 5.0 ng mL−1. The developed method was also successfully applied to the determination of drotaverine in real samples, with recoveries in the range from 98.63 to 100.41%.


Micellar media Carbon nanofiber Drotaverine hydrochloride Voltammetric sensor 



The authors acknowledge the financial support by way of a junior research fellowship (INSPIRE) to one of them (K.S.) by the Department of Science and Technology, New Delhi, India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gupta VK, Nayak A, Agarwal S, Singhal B (2011) Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Comb Chem High Throughput Screen 14:284–302. CrossRefGoogle Scholar
  2. 2.
    Gupta VK, Sethi B, Sharma RA, Agarwal S, Bharti A (2013) Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J Mol Liq 177:114–118. CrossRefGoogle Scholar
  3. 3.
    Gupta VK, Ganjali MR, Norouzi P, Khani H, Nayak A, Agarwal S (2011) Electrochemical analysis of some toxic metals by ion–selective electrodes. Crit Rev Anal Chem 41:282–313. CrossRefGoogle Scholar
  4. 4.
    Srivastava SK, Gupta VK, Jain S (1995) Determination of lead using a poly(vinyl chloride)-based crown ether membrane. Analyst 120:495–498. CrossRefGoogle Scholar
  5. 5.
    Gupta VK, Kumar S, Singh R, Singh LP, Shoora SK, Sethi B (2014) Cadmium (II) ion sensing through p-tert-butyl calix[6]arene based potentiometric sensor. J Mol Liq 195:65–68. CrossRefGoogle Scholar
  6. 6.
    Mirceski V, Gulaboski R (2014) Recent achievements in square-wave voltammetry (a review). Maced J Chem Chem Eng 33:1–12Google Scholar
  7. 7.
    Ozkan SA, Uslu B, Enein HYA (2003) Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit Rev Anal Chem 33:155–181. CrossRefGoogle Scholar
  8. 8.
    Srivastava SK, Gupta VK, Dwivedi MK, Jain S (1995) Caesium PVC-crown (dibenzo-24-crown-8) based membrane sensor. Anal Proc Incl Anal Commun 32:21–23. CrossRefGoogle Scholar
  9. 9.
    Gupta VK, Maleh HK, Sadegh R (2015) Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int J Electrochem Sci 10:303–316Google Scholar
  10. 10.
    Yola ML, Gupta VK, Eren T, Sen AE, Atar N (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211. CrossRefGoogle Scholar
  11. 11.
    Maleh HK, Javazmi FT, Atar N, Yola ML, Gupta VK, Ensafi AA (2015) A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind Eng Chem Res 54:3634–3639. CrossRefGoogle Scholar
  12. 12.
    Gupta VK, Singh AK, Kumawat LK (2014) Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sensors Actuators B 195:98–108. CrossRefGoogle Scholar
  13. 13.
    Srivastava SK, Gupta VK, Jain S (1996) PVC-based 2,2,2-cryptand sensor for zinc ions. Anal Chem 68:1272–1275CrossRefGoogle Scholar
  14. 14.
    Gupta VK, Singh LP, Singh R, Upadhyay N, Kaur SP, Sethi B (2012) A novel copper (II) selective sensor based on dimethyl 4,4′ (o-phenylene) bis (3-thioallophanate) in PVC matrix. J Mol Liq 174:11–16. CrossRefGoogle Scholar
  15. 15.
    Dehghani MH, Sanaei D, Ali I, Bhatnagar A (2016) Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J Mol Liq 215:671–679. CrossRefGoogle Scholar
  16. 16.
    Gupta VK, Mergu N, Kumawat LK, Singh AK (2015) Selective naked-eye detection of magnesium (II) ions using a coumarin-derived fluorescent probe. Sensors Actuators B 207:216–223. CrossRefGoogle Scholar
  17. 17.
    Gupta VK, Mergu N, Kumawat LK, Singh AK (2015) A reversible fluorescence “off-on-off” sensor for sequential detection of aluminum and acetate/fluoride ions. Talanta 144:80–89. CrossRefGoogle Scholar
  18. 18.
    Jain R, Jadon N, Sharma S, Singh K (2016) Recent trends in electrochemical sensors for multianalyte detection–a review. Talanta 161:894–916. CrossRefGoogle Scholar
  19. 19.
    Zen JM, Kumar AS, Tsai DM (2003) Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15:1073–1087. CrossRefGoogle Scholar
  20. 20.
    Kutner W, Wang J, Lher M, Buck RP (1998) Analytical aspects of chemically modified electrodes: classification, critical evaluation and recommendations. Pure Appl Chem 70:1301–1318. CrossRefGoogle Scholar
  21. 21.
    Wring SA, Hart JP (1992) Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds-a review. Analyst 117:1215–1229. CrossRefGoogle Scholar
  22. 22.
    Kalcher K (1990) Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 2:419–433. CrossRefGoogle Scholar
  23. 23.
    Wang J (1991) Modified electrodes for electrochemical sensors. Electroanalysis 3:255–259. CrossRefGoogle Scholar
  24. 24.
    Baghayeri M, Amiri A, Malekia B, Alizadeh Z, Reiser O (2018) A simple approach for simultaneous detection of cadmium (II) and lead (II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sensors Actuators B 273:1442–1450. CrossRefGoogle Scholar
  25. 25.
    Baghayeri M, Amiri A, Alizadeh Z, Veisi H, Hasheminejad E (2018) Non-enzymatic voltammetric glucose sensor made of ternary NiO/Fe3O4-SH/para-amino hippuric acid nanocomposite. J Electroanal Chem 810:69–77. CrossRefGoogle Scholar
  26. 26.
    Baghayeri M, Veisi H, Farhadi S, Beitollahi H, Maleki B (2018) Ag nanoparticles decorated Fe3O4/chitosan nanocomposite: synthesis, characterization and application toward electrochemical sensing of hydrogen peroxide. J Iran Chem Soc 15:1015–1022. CrossRefGoogle Scholar
  27. 27.
    Baghayeri M, Beitollahi H, Akbari A, Farhadi S (2018) Highly sensitive nanostructured electrochemical sensor based on carbon nanotubes-Pt nanoparticles paste electrode for simultaneous determination of levodopa and tyramine. Russ J Electrochem 54:292–301. CrossRefGoogle Scholar
  28. 28.
    Baghayeri M, Ansari R, Nodehi M, Razavipanah I, Veisi H (2018) Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe3O4@gold nanocomposite. Microchim Acta 185:320–328. CrossRefGoogle Scholar
  29. 29.
    Jain R, Jadon N, Singh K (2016) Review-new generation electrode materials for sensitive detection. J Electrochem Soc 163:H159–H170. CrossRefGoogle Scholar
  30. 30.
    Wang GQ, Wang YQ, Chen LX, Choo J (2010) Nanomaterial-assisted aptamers for optical sensing. Biosens Bioelectron 25:1859–1868. CrossRefGoogle Scholar
  31. 31.
    Baghayeri M, Veisi H, Motlagh MG (2017) Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sensors Actuators B 249:321–330. CrossRefGoogle Scholar
  32. 32.
    Baghayeri M, Sedrpoushan A, Mohammadi A, Heidari M (2017) A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics 23:1553–1562. CrossRefGoogle Scholar
  33. 33.
    Baghayeri M (2017) Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: application to determination of droxidopa in presence of phenobarbital. Sensors Actuators B 240:255–263. CrossRefGoogle Scholar
  34. 34.
    Baghayeri M, Maleki B, Zarghani R (2014) Voltammetric behaviour of tiopronin on carbon paste electrode modified with nanocrystalline alloys Fe50Ni50. Mater Sci Eng C 44:175–182. CrossRefGoogle Scholar
  35. 35.
    Baghayeri M, Zare EN, Lakouraj MM (2014) A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosens Bioelectron 55:259–265. CrossRefGoogle Scholar
  36. 36.
    Baghayeri M, Rouhi M, Lakouraj MM, Amiri-Aref M (2017) Bioelectrocatalysis of hydrogen peroxide based on immobilized hemoglobin onto glassy carbon electrode modified with magnetic poly(indole-co-thiophene) nanocomposite. J Eletroanal Chem 784:69–76. CrossRefGoogle Scholar
  37. 37.
    Baghayeri M, Veisi H (2015) Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens Bioelectron 74:190–198. CrossRefGoogle Scholar
  38. 38.
    Zhang L, Wang J, Tian Y (2014) Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Microchim Acta 181:1471–1484. CrossRefGoogle Scholar
  39. 39.
    Hamad AA, Alsaadi MA, Hayyan M, Juneidi I, Hashim HA (2016) Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: a review. Electrochim Acta 193:321–343. CrossRefGoogle Scholar
  40. 40.
    Ambrosi A, Bonanni A, Sofer Z, Cross JS, Pumera M (2011) Electrochemistry at chemically modified graphenes. Chem Eur J 17:10763–10770. CrossRefGoogle Scholar
  41. 41.
    Ramnani P, Saucedo NM, Mulchandani A (2016) Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 143:85–98. CrossRefGoogle Scholar
  42. 42.
    Agui L, Sedeno PY, Pingarron JM (2008) Role of carbon nanotubes in electroanalytical chemistry - a review. Anal Chim Acta 622:11–47. CrossRefGoogle Scholar
  43. 43.
    Lili L, Zhou T, Sun G, Li Z, Yang W, Jia J, Yang G (2015) Ultrasensitive electrospun nickel-doped carbon nanofibers electrode for sensing paracetamol and glucose. Electrochim Acta 152:31–37. CrossRefGoogle Scholar
  44. 44.
    Baker SE, Colavita PE, Tse KY, Hamers RJ (2006) Functionalized vertically aligned carbon nanofibers as scaffolds for immobilization and electrochemical detection of redox-active proteins. Chem Mater 18:4415–4422. CrossRefGoogle Scholar
  45. 45.
    Yue Y, Hu G, Zheng M, Guo Y, Cao J, Shao S (2012) A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid. Carbon 50:107–114. CrossRefGoogle Scholar
  46. 46.
    Zhang H, Zhang J, Zheng J (2015) Electrochemical behaviour of modified electrodes with carbon nanotubes and nanofibers: application to the sensitive measurement of uric acid in the presence of ascorbic acid. Measurement 59:177–183. CrossRefGoogle Scholar
  47. 47.
    Li Z, Cui X, Zheng J, Wang Q, Lin Y (2007) Effects of microstructure of carbon nanofibers for amperometric detection of hydrogen peroxide. Anal Chim Acta 597:238–244. CrossRefGoogle Scholar
  48. 48.
    Adamson AW (1990) Physical chemistry of surfaces. Wiley, New YorkGoogle Scholar
  49. 49.
    Jain R, Tiwari DC, Karolia P (2014) Highly sensitive and selective polyaniline– zinc oxide nanocomposite sensor for betahistine hydrochloride in solubilized system. J Mol Liq 196:308–313. CrossRefGoogle Scholar
  50. 50.
    Vittal R, Gomathi H, Kim KJ (2006) Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Adv Colloid Interf Sci 119:55–68. CrossRefGoogle Scholar
  51. 51.
    Clelland CW, Jonathan DC. Eur Pat Appl EP 300662 (Cl, GOIN 2730), 25 Jan 1989, GB Appl 87/16809, 16 Jul 1987; 7 pp.
  52. 52.
    Jain R, Dwivedi A, Mishra R (2008) Voltammetric behavior of cefdinir in solubilized system. J Colloid Interface Sci 318:296–301. CrossRefGoogle Scholar
  53. 53.
    Jain R, Rather JA (2011) Voltammetric determination of antibacterial drug gemifloxacin in solubilized systems at multi-walled carbon nanotubes modified glassy carbon electrode. Colloids Surf B 83:340–346. CrossRefGoogle Scholar
  54. 54.
    Amin AS, Sheikh RE, Zahran F, Gouda AAEF (2007) Spectrophotometric determination of pipazethate HCl, dextromethorphan HBr and drotaverine HCl in their pharmaceutical preparations. Spectrochim Acta A 67:1088–1093. CrossRefGoogle Scholar
  55. 55.
    Wasseef DRE, Sherbiny DE, Eid M, Belal F (2008) Spectrofluorometric determination of drotaverine hydrochloride in pharmaceutical preparations. Anal Lett 41:2354–2362. CrossRefGoogle Scholar
  56. 56.
    Metwally FH (2008) Simultaneous determination of nifuroxazide and drotaverine hydrochloride in pharmaceutical preparations by bivariate and multivariate spectral analysis. Spectrochim Acta A 69:343–349. CrossRefGoogle Scholar
  57. 57.
    Roosewelt C, Harihrishnan N, Gunasekaran V, Chandrasekaran S, Haribaskar V, Prathap B (2010) Simultaneous estimation of drotaverine HCl and mefenamic acid in tablet dosage form using spectrophotometric method. Asian J Chem 22:843–849Google Scholar
  58. 58.
    Ezei JM, Kuttel S, Szentmiklosi P, Marton S, Racz I (1984) A new method for high-performance liquid chromatographic determination of drotaverine in plasma. J Pharm Sci 73:1489–1491. CrossRefGoogle Scholar
  59. 59.
    Bolaji OO, Onyeji CO, Ogungbamila FO, Ogunbona FA (1993) High-performance liquid chromatographic method for the determination of drotaverine in human plasmaand urine. J Chromatogr 622:93–97CrossRefGoogle Scholar
  60. 60.
    Maher HM, Belal TS (2012) HPLC-DAD stability indicating determination of the fixed-dose combination of nifuroxazide and drotaverine hydrochloride in capsules. J Liq Chromatogr Relat Technol 35:2001–2020. CrossRefGoogle Scholar
  61. 61.
    Issa YM, Hassouna MEM, Zayed AG (2012) Simultaneous determination of paracetamol, caffeine, domperidone, ergotamine tartrate, propyphenazone, and drotaverine HCl by high performance liquid chromatography. J Liq Chromatogr Relat Technol 35:2148–2161. CrossRefGoogle Scholar
  62. 62.
    Vancea S, Gáll Z, Nagya GD, Balás RB (2014) Rapid LC–MS/MS method for determination of drotaverine in a bioequivalence study. J Pharm Biomed Anal 98:417–423. CrossRefGoogle Scholar
  63. 63.
    Ziyatdinova GK, Samigullin AI, Budnikov GK (2007) Voltammetric determination of papaverine and drotaverine. J Anal Chem 62:773–776. CrossRefGoogle Scholar
  64. 64.
    Zayed SIM, Issa YM (2009) Cathodic adsorptive stripping voltammetry of drotaverine hydrochloride and its determination in tablets and human urine by differential pulse voltammetry. Bioelectrochemistry 75:9–12. CrossRefGoogle Scholar
  65. 65.
    Jain R, Vikas RJA (2011) Voltammetric behaviour of drotaverine hydrochloride in surfactant media and its enhancement determination in Tween-20. Colloids Surf B 82:333–339. CrossRefGoogle Scholar
  66. 66.
    Jain R, Jadon N (2015) Voltammetric quantification of antispasmodic drug drotaverine hydrochloride in human serum. Curr Pharm Anal 11:145–154CrossRefGoogle Scholar
  67. 67.
    Vyskocil V, Barek J (2009) Mercury electrodes–possibilities and limitations in environmental electroanalysis. Crit Rev Anal Chem 39:173–188. CrossRefGoogle Scholar
  68. 68.
    Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63. CrossRefGoogle Scholar
  69. 69.
    Rice KM, Walker EMJ, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47:74–83. CrossRefGoogle Scholar
  70. 70.
    Yerga DM, Garcia MBG, Garcia AC (2013) Electrochemical determination of mercury: a review. Talanta 116:1091–1104. CrossRefGoogle Scholar
  71. 71.
    Singh K, Jadon N, Jain R (2018) Synergistic effect of 1-butyl-2,3-dimethylimidazolium bis (trifluoromethanesulfonyl) imide and titanium oxide on the redox behaviour of flunarizine in solubilized media. Colloids Surf B 166:72–78. CrossRefGoogle Scholar
  72. 72.
    Jain R, Tiwari DC, Shrivastava S (2014) A sensitive voltammetric sensor based on synergistic effect of polyaniline and zirconia nanocomposite film for quantification of proton pump inhibitor esomeprazole. J Electrochem Soc 161:B39–B44. CrossRefGoogle Scholar
  73. 73.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  74. 74.
    Jain R, Dhanjai (2013) Nano graphene based sensor for antiarrhythmic agent quinidine in solubilized system. Colloids Surf B 105:278–283. CrossRefGoogle Scholar
  75. 75.
    Gan T, Hu C, Chen Z, Hu S (2011) A disposable electrochemical sensor for the determination of indole-3-acetic acid based on poly(safranine T)-reduced graphene oxide nanocomposite. Talanta 85:310–316. CrossRefGoogle Scholar
  76. 76.
    Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393. CrossRefGoogle Scholar
  77. 77.
    Karthikeyan S, Gupta VK, Boopathy R, Titus A, Sekaran G (2012) A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. J Mol Liq 173:153–163. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Studies in ChemistryJiwaji UniversityGwaliorIndia
  2. 2.School of Environmental Science and TechnologyDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations