, Volume 25, Issue 7, pp 3287–3298 | Cite as

Mn (OH)2 electrodeposited on secondary porous Ni nano-architecture foam as high-performance electrode for supercapacitors

  • Guo-rong XuEmail author
  • Chi-peng Xie
  • Ya Wen
  • An-ping Tang
  • Hai-shen Song
Original Paper


The preparation and capacitance performances of Mn (OH)2@ secondary porous Ni nano-architecture foam (Mn (OH)2@SPNiNF) hybrids are systematically studied. The SPNiNF structure is simply obtained via a NiC2O4·2H2O in situ growing process on Ni foam surface, combined with a thermally treated process under Ar gas. Then, a layer of Mn (OH)2 film was electrodeposited onto the above SPNiNF sheet by applying a galvanostatical technique. It is shown that the SPNiNF sheet is composed of interconnected nanoparticles with a diameter range of 100–200 nm. The fabricated Mn (OH)2@SPNiNF electrode exhibited a high specific capacitance of 532.7 F g−1 and an areal capacitance of 906 m F cm−2 at a current density of 0.5 A g−1. The Mn (OH)2@SPNiNF electrode also exhibited a low ions diffusion resistance and a good cycling performance along with 85.7% specific capacitance retained after 5000 cycles. An asymmetric Mn (OH)2@SPNiNF //AC super capacitor exhibited an energy density of 69.1 Wh kg−1 at a power density of 0.6 kW kg−1. These results demonstrated that the Mn (OH)2@SPNiNF was a promising electrode material for supercapacitors.


Supercapacitor Manganese hydroxide Nickel Nano-architecture Electrochemical performance 


Funding information

This work was supported by the financial support of the Science and Technology Planning Project of the Hunan Provincial Science and Technology Department (No. 2012 GK3098) and Scientific Research Fund of Hunan Provincial Education Department (No. 14A052).


  1. 1.
    Raza W, Ali F, Raza N, Luo YW, Kim K, Yang JH, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473.
  2. 2.
    Kouchachvili L, Yaïci W, Entchev E (2018) Hybrid battery/supercapacitor energy storage system for the electric vehicles. J Power Sources 374:237–248. CrossRefGoogle Scholar
  3. 3.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publisher, New YorkCrossRefGoogle Scholar
  4. 4.
    Li YF, Yu J, Chen SH, Huang ZZ, Wang L (2018) Fe3O4/functional exfoliation graphene on carbon paper nanocomposites for supercapacitor electrode. Ionics 24:2697–2704. CrossRefGoogle Scholar
  5. 5.
    Chan PY, Majid SR (2018) Synthesis and electrochemical characterization of amorphous manganese-nickel oxide as supercapacitor electrode material. Ionics 24:539–548. CrossRefGoogle Scholar
  6. 6.
    Hoa NV, Quyen TTH, Nghia NH, Hieu NV, Shim JJ (2017) In situ growth of flower-like V2O5 arrays on graphene@nickel foam as high-performance electrode for supercapacitors. J Alloys Compd 702:693–699. CrossRefGoogle Scholar
  7. 7.
    Patil UM, Nam MS, Lee SC, Liu S, Kang S, Park BH, Jun SC (2017) Temperature influenced chemical growth of hydrous copper oxide/hydroxide thin film electrodes for high performance supercapacitors. J Alloys Compd 701:1009–1018. CrossRefGoogle Scholar
  8. 8.
    Boddula R, Bolagam R, Srinivasan P (2018) Incorporation of graphene-Mn3O4 core into polyaniline shell: supercapacitor electrode material. Ionics 24:1467–1474. CrossRefGoogle Scholar
  9. 9.
    Wang HP, Ma GF, Tong YC, Yang ZR (2018) Biomass carbon/polyaniline composite and WO3 nanowire-based asymmetric supercapacitor with superior performance. Ionics 24:3123–3131. CrossRefGoogle Scholar
  10. 10.
    Yan J, Rasenthiram L, Fang H, Tjandra R, Wang LX, Wang LZ, Zhang Y, Zhang LS, Yu AP (2018) From amorphous to crystalline: in situ growth Ni-Co chalcogenides hybrid nanostructure on carbon cloth for supercapacitor. Ionics.
  11. 11.
    Nayak PK, Munichandraiah N (2009) Simultaneous electrodeposition of MnO2 and Mn (OH)2 for supercapacitor studies. Electrochem Solid-State Lett 12(6):A115–A119. CrossRefGoogle Scholar
  12. 12.
    Wei B, Wang LD, Miao QH, Yuan YA, Dong P, Vajtai R, Fei WD (2015) Fabrication of manganese oxide/three-dimensional reduced graphene oxide composites as the supercapacitors by a reverse microemulsion method. Carbon 85:249–260. CrossRefGoogle Scholar
  13. 13.
    Huang M, Li F, Zhao XL, Luo D, You XQ, Zhang YX, Li G (2015) Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam for binder-free supercapacitor electrode. Electrochim Acta 152:172–177 CrossRefGoogle Scholar
  14. 14.
    Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423 CrossRefGoogle Scholar
  15. 15.
    Huang M, Zhao XL, Li F, Li W, Zhang B, Zhang YX (2015) Synthesis of Co3O4/SnO2@MnO2 core–shell nanostructures for high-performance supercapacitors. J Mater Chem A 3:12852–12857 CrossRefGoogle Scholar
  16. 16.
    Huang M, Zhao XL, Li F, Zhang LL, Zhang YX (2015) Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J Power Sources 277:36–43. CrossRefGoogle Scholar
  17. 17.
    Zhang YX, Huang M, Li F, Wang XL, Wen ZQ (2015) One-pot synthesis of hierarchical MnO2-modified diatomites for electrochemical capacitor electrodes. J Power Sources 246:449–456 CrossRefGoogle Scholar
  18. 18.
    Xu GR, Shi JJ, Dong WH, Wen Y, Min XP, Tang AP (2015) One-pot synthesis of a Ni-Mn3O4 nanocomposite for supercapacitors. J Alloys Compd 630:266–271. CrossRefGoogle Scholar
  19. 19.
    Yang JH, Yang XF, Zhong YL, Ying JY (2015) Porous MnO/Mn3O4 nanocomposites for electrochemical energy storage. Nano Energy 13:702–708. CrossRefGoogle Scholar
  20. 20.
    Kulkarni S, Puthusseri D, Thakur S, Banpurkar A, Patil S (2017) Hausmannite manganese oxide cathodes for supercapacitors: surface wettability and electrochemical properties. Electrochim Acta 231:460–467. CrossRefGoogle Scholar
  21. 21.
    Yadav AA, Jadhav SN, Chougule DM, Patila PD, Chavan UJ, Kolekar YD (2016) Spray deposited Hausmannite Mn3O4 thin films using aqueous/organic solvent mixture for supercapacitor applications. Electrochim Acta 206:134–142. CrossRefGoogle Scholar
  22. 22.
    Xu JH, Sun YD, Lu MJ, Wang L, Zhang J, Qian JH, Kim EJ (2017) Fabrication of porous Mn2O3 microsheet arrays on nickel foam as high-rate electrodes for supercapacitors. J Alloys Compd 717:108–115. CrossRefGoogle Scholar
  23. 23.
    Li W, Shao J, Liu Q, Liu X, Zhou X, Hu J (2015) Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors. Electrochim Acta 157:108–114. CrossRefGoogle Scholar
  24. 24.
    Wang T, Zhu YB, Xing Z, Tang GX, Fan HL (2015) The specific capacitive performances of the manganese oxyhydroxide/carbon microcoil electrodes for supercapacitors. Electrochim Acta 151:134–139. CrossRefGoogle Scholar
  25. 25.
    Xu GR, Min XP, Chen QL, Wen Y, Tang AP, Song HS (2017) Sonochemical synthesis of a Mn3O4/MnOOH nanocomposite for electrochemical energy storage. J Alloys Compd 691:1018–1023. CrossRefGoogle Scholar
  26. 26.
    Cao YB, Xiao YH, Y Y, Gong CF, Wang FL (2014) One-pot synthesis of MnOOH nanorods on graphene for asymmetric supercapacitors. Electrochim Acta 127:200–207. CrossRefGoogle Scholar
  27. 27.
    Fang H, Zhang SC, Wu XM, Liu WB, Wen BH, Du ZJ, Jiang T (2013) Facile fabrication of multiwalled carbon nanotube/MnOOH coaxial nanocable films by electrophoretic deposition for supercapacitors. J Power Sources 235:95–104. CrossRefGoogle Scholar
  28. 28.
    Anandana S, Raj BGS, Lee GJ, Wu JJ (2013) Sonochemical synthesis of manganese (II) hydroxide for supercapacitor applications. Mater Res Bull 48(9):3357–3361. CrossRefGoogle Scholar
  29. 29.
    Li M, Cheng PJ, Wang J, Liu F, Zhang XB (2016) The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochim Acta 206:108–115. CrossRefGoogle Scholar
  30. 30.
    Liu JS, Hu Y, Chuang TL, Huang CL (2013) Mn (OH)2/multi-walled carbon nanotube composite thin film prepared by spray coating for flexible supercapacitive devices. Thin Solid Films 544:186–190. CrossRefGoogle Scholar
  31. 31.
    Quan W, Tang ZL, Wang ST, Hong Y, Zhang ZT (2016) Facile preparation of free-standing rGO paper-based Ni-Mn LDH/graphene superlattice composites as a pseudocapacitive electrode. Chem Comm 52:3694–3696CrossRefGoogle Scholar
  32. 32.
    Fan Z, Chen JH, Sun F, Yang L, Xu Y, Kuang YF (2007) Preparation of porous manganese hydroxide film and its application in supercapacitors. Indian J Chem 46A:736–741Google Scholar
  33. 33.
    Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190CrossRefGoogle Scholar
  34. 34.
    Simon P, Gogotsi PY (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  35. 35.
    Zhai T, Wang FX, Yu MH, Xie SL, Liang CL, Li C, Xiao FM, Tang RH, Wu QX, Lu XH, Tong YX (2013) 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale 5:6790–6796CrossRefGoogle Scholar
  36. 36.
    Li YJ, Cao DX, Wang Y, Yang SN, Zhang DM, Ye K, Cheng K, Yin JL, Wang GL, Xu Y (2015) Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. J Power Sources 279:138–145. CrossRefGoogle Scholar
  37. 37.
    Huang M, Mi R, Liu H, Li F, Zhao XL, Zhang W, He SX, Zhang YX (2014) Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. J Power Sources 269:760–767. CrossRefGoogle Scholar
  38. 38.
    Kong SY, Cheng K, Ouyang T, Gao YY, Ye K, Wang GL, Cao DX (2017) Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors. Electrochim Acta 226:29–39 CrossRefGoogle Scholar
  39. 39.
    Jeyasubramanian K, Raja TSG, Purushothaman S, Kumar MV, Sushmitha I (2017) Supercapacitive performances of MnO2 nanostructures grown on hierarchical Cu nano leaves via electrodeposition. Electrochim Acta 227:401–409 CrossRefGoogle Scholar
  40. 40.
    Ashassi-Sorkhabi H, La’le Badakhshan P (2017) Electrochemical synthesis of three-dimensional porous networks of nickel with different micro-nano structures for the fabrication of Ni/MnOx anocomposites with enhanced supercapacitive performance. Appl Surf Sci 419:165–176 CrossRefGoogle Scholar
  41. 41.
    Zeng ZG, Zhou HJ, Long X, Guo EJ, Wang XH (2015) Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance. J Alloys Compd 632:376–385. CrossRefGoogle Scholar
  42. 42.
    Kazemi SH, Kianic MA, Ghaemmaghami M, Kazemi H (2016) Nano-architectured MnO2 electrodeposited on the cu-decorated nickel foam substrate as supercapacitor electrode with excellent areal capacitance. Electrochim Acta 197:107–116 CrossRefGoogle Scholar
  43. 43.
    Xu GR, Wen Y, Min XP, Dong WH, Tang AP, Song HS (2015) Construction of MnO2/3-dimensional porous crack Ni for high-performance supercapacitors. Electrochim Acta 186:133–141. CrossRefGoogle Scholar
  44. 44.
    Pan ZH, Qiu YC, Yang J, Ye FM, Xu YJ, Zhang XY, Liu MN, Zhang YG (2016) Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy 26:610–619 CrossRefGoogle Scholar
  45. 45.
    Xiao K, Li JW, Chen GF, Liu ZQ, Li N, Su YZ (2014) Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors. Electrochim Acta 149:341–348. CrossRefGoogle Scholar
  46. 46.
    VMałecka B, VMałecki A, VDrożdż-Cieśla E, Tortet L, Llewellyn P, Rouquerol F (2007) Some aspects of thermal decomposition of NiC2O4·2H2O. Thermochim Acta 466:57–62. CrossRefGoogle Scholar
  47. 47.
    Nesbitt HW, Banerjee D (1999) Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am Mineral 83:305–315CrossRefGoogle Scholar
  48. 48.
    Sumboja A, Foo CY, Wang X, Lee PS (2013) Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv Mater 25:2809–2815. CrossRefGoogle Scholar
  49. 49.
    Shen BX, Liu T, Zhao N, Yang XY, Deng LD (2010) Iron-doped Mn-Ce/TiO2 catalyst for low temperatures elective catalytic reduction of NO with NH3. J Environ Sci 22(9):1447–1454. CrossRefGoogle Scholar
  50. 50.
    Beyreuther E, GrafstrÖm S, Eng LM (2006) XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content. Phys Rev B 73(15):155425CrossRefGoogle Scholar
  51. 51.
    Castro VD, Polzonetti G (1989) XPS study of MnO oxidation. J Electron Spectrosc 48(1):117–123CrossRefGoogle Scholar
  52. 52.
    Ting Z, Hao J, Jan M (2011) Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors. J Power Sources 196:860–864. CrossRefGoogle Scholar
  53. 53.
    Su DQ, Pan LJ, Fu X, Ma H (2015) Facile synthesis of CNC-MnO2 hybrid as a supercapacitor electrode. Appl Surf Sci 324:349–354 CrossRefGoogle Scholar
  54. 54.
    Chen LF, Huang ZH, Liang HW, Guan QF, Yu SH (2013) Bacterial-cellulose derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv Mater 25:4746–4752CrossRefGoogle Scholar
  55. 55.
    Gao H, Xiao F, Ching CB, Duan H (2012) High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl Mater Interfaces 4:2801–2810. CrossRefGoogle Scholar
  56. 56.
    Cheng Y, Zhang H, Lu S, Varanasi CV, Liu J (2013) Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale 5:1067–1073. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guo-rong Xu
    • 1
    • 2
    Email author
  • Chi-peng Xie
    • 1
  • Ya Wen
    • 1
  • An-ping Tang
    • 1
  • Hai-shen Song
    • 1
  1. 1.School of Chemistry and Chemical EngineeringHunan University of Science and TechnologyXiangtanChina
  2. 2.Key Laboratory of Theoretical Organic Chemistry and Functional MoleculeMinistry of EducationXiangtanChina

Personalised recommendations