Advertisement

Ionics

pp 1–10 | Cite as

Nanocoating of Ce-tannic acid metal-organic coordination complex: surface modification of layered Li1.2Mn0.6Ni0.2O2 by CeO2 coating for lithium-ion batteries

  • Jinhua Wu
  • Chao Han
  • Hao Wu
  • Heng Liu
  • Yun Zhang
  • Chao Lu
Original Paper
  • 9 Downloads

Abstract

As a low-cost and environmentally friendly polyphenol, tannic acid (TA) is also a versatile coating molecule as it can strongly bind to substrates with different shapes (such as film and particle). We prepared metal-organic coordination of TA and Ce ions onto the surface of Li1.2Mn0.6Ni0.2O2 (LMNO) and then calcined to synthesize CeO2-coated LMNO. Various physicochemical characterizations were performed to reveal the phase structure and morphology of the pristine, metal-organic coordination complex (MOC), and CeO2-coated LMNO cathodes. It is found that the CeO2-coating layer with a thin thickness of ~ 10 nm is successfully built on the surface of LMNO, which provide a fast pathway for lithium-ion diffusion. The electrochemical performance measurements were used to identify the correlation between CeO2 modification and structural changes. In comparison with the pristine LMNO, the CeO2-modified sample exhibits superior electrochemical properties in terms of specific capacity, rate capability, and cycling performances. Specifically, the LMNO coated with 1 wt% CeO2 via MOC delivers discharge capacities of 270, 152, and 132 mAh g−1 at the current rates of 0.1, 5, and 8 C, respectively, much higher than the pristine LMNO (235, 97, and 86 mAh g−1, respectively) and the sample by blending method (263, 121, and 90 mAh g−1, respectively). The cyclic performance shows that 78.5% of the initial discharge capacity can be retained after 200 cycles at 1 C. Such enhanced electrochemical performance of the surface-modified LMNO can be attributed to the higher Li+ diffusion rate and the lower electrochemical polarization endowed by the uniform and conductive CeO2-coating layer.

Keywords

Metal-organic coordination Li-rich layered oxides CeO2 Surface coating Cathode materials Lithium-ion batteries 

Notes

Supplementary material

11581_2018_2823_MOESM1_ESM.doc (2.6 mb)
ESM 1 (DOC 2701 kb)

References

  1. 1.
    Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:e1800561.  https://doi.org/10.1002/adma.201800561 CrossRefGoogle Scholar
  2. 2.
    Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3(4):279–289.  https://doi.org/10.1038/s41560-018-0108-1 CrossRefGoogle Scholar
  3. 3.
    Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2(M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17(30):3112–3125.  https://doi.org/10.1039/B702425H CrossRefGoogle Scholar
  4. 4.
    Fell CR, Qian D, Carroll KJ, Chi M, Jones JL, Meng YS (2013) Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle. Chem Mater 25(9):1621–1629.  https://doi.org/10.1021/cm4000119 CrossRefGoogle Scholar
  5. 5.
    Wang Y, Bie X, Nikolowski K, Ehrenberg H, Du F, Hinterstein M, Wang C, Chen G, Wei Y (2013) Relationships between structural changes and electrochemical kinetics of Li-excess Li1.13Ni0.3Mn0.57O2 during the first charge. J Phys Chem C 117(7):3279–3286.  https://doi.org/10.1021/jp311518r CrossRefGoogle Scholar
  6. 6.
    Mohanty D, Kalnaus S, Meisner RA, Safat AS, Li J, Payzant EA, Rhodes K, Wood IIIDL, Daniel C (2013) Structural transformation in a Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold. RSC Adv 3(20):7479–7485.  https://doi.org/10.1039/c3ra40510a CrossRefGoogle Scholar
  7. 7.
    Xu J, Sun M, Qiao R, Renfrew SE, Ma L, Wu T, Hwang S, Nordlund D, Su D, Amine K, Lu J, McCloskey BD, Yang W, Tong W (2018) Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat Commun 9(1):947.  https://doi.org/10.1038/s41467-018-03403-9 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Krishna Kumar S, Ghosh S, Ghosal P, Martha SK (2017) Synergistic effect of 3D electrode architecture and fluorine doping of Li1.2Ni0.15Mn0.55Co0.1O2 for high energy density lithium-ion batteries. J Power Sources 356:115–123.  https://doi.org/10.1016/j.jpowsour.2017.04.077 CrossRefGoogle Scholar
  9. 9.
    Yi TF, Li YM, Yang SY, Zhu YR, Xie Y (2016) Improved cycling stability and fast charge-discharge performance of cobalt-free lithium-rich oxides by magnesium-doping. ACS Appl Mater Interfaces 8(47):32349–32359CrossRefPubMedGoogle Scholar
  10. 10.
    Zhao T, Li L, Chen S, Chen R, Zhang X, Lu J, Wu F, Amine K (2014) The effect of chromium substitution on improving electrochemical performance of low-cost Fe–Mn based Li-rich layered oxide as cathode material for lithium-ion batteries. J Power Sources 245:898–907.  https://doi.org/10.1016/j.jpowsour.2013.07.026 CrossRefGoogle Scholar
  11. 11.
    Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133(12):4404–4419.  https://doi.org/10.1021/ja108588y CrossRefPubMedGoogle Scholar
  12. 12.
    Kang S-H, Johnson CS, Vaughey JT, Amine K, Thackeray MM (2006) The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3-0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells. J Electrochem Soc 153(6):A1186–A1192.  https://doi.org/10.1149/1.2194764 CrossRefGoogle Scholar
  13. 13.
    Zheng J, Deng S, Shi Z, Xu H, Xu H, Deng Y, Zhang Z, Chen G (2013) The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. J Power Sources 221:108–113.  https://doi.org/10.1016/j.jpowsour.2012.06.084 CrossRefGoogle Scholar
  14. 14.
    Zhang J, Lei Z, Wang J, NuLi Y, Yang J (2015) Surface modification of Li1.2Ni0.13Mn0.54Co0.13O2 by hydrazine vapor as cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 7(29):15821–15829.  https://doi.org/10.1021/acsami.5b02937 CrossRefPubMedGoogle Scholar
  15. 15.
    Wu B, Yang X, Jiang X, Zhang Y, Shu H, Gao P, Liu L, Wang X (2018) Synchronous tailoring surface structure and chemical composition of Li-rich-layered oxide for high-energy lithium-ion batteries. Adv Funct Mater 28:1803392.  https://doi.org/10.1002/adfm.201803392 CrossRefGoogle Scholar
  16. 16.
    Guo H, Wei Z, Jia K, Qiu B, Yin C, Meng F, Zhang Q, Gu L, Han S, Liu Y, Zhao H, Jiang W, Cui H, Xia Y, Liu Z (2019) Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater 16:220–227.  https://doi.org/10.1016/j.ensm.2018.05.022 CrossRefGoogle Scholar
  17. 17.
    Xie Y, Gao D, Zhang LL, Chen JJ, Cheng S, Xiang HF (2016) CeF3-modified LiNi1/3Co1/3Mn1/3O2 cathode material for high-voltage Li-ion batteries. Ceram Int 42(13):14587–14594.  https://doi.org/10.1016/j.ceramint.2016.06.074 CrossRefGoogle Scholar
  18. 18.
    Liu W, Li X, Xiong D, Hao Y, Li J, Kou H, Yan B, Li D, Lu S, Koo A, Adair K, Sun X (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120.  https://doi.org/10.1016/j.nanoen.2017.11.010 CrossRefGoogle Scholar
  19. 19.
    Wang C, Zhou F, Chen K, Kong J, Jiang Y, Yan G, Li J, Yu C, Tang W-P (2015) Electrochemical properties of α-MoO3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. Electrochim Acta 176:1171–1181.  https://doi.org/10.1016/j.electacta.2015.07.167 CrossRefGoogle Scholar
  20. 20.
    Wu F, Wang Z, Su Y, Yan N, Bao L, Chen S (2014) Li[Li0.2Mn0.54Ni0.13Co0.13]O2–MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries. J Power Sources 247:20–25.  https://doi.org/10.1016/j.elecom.2008.10.036 CrossRefGoogle Scholar
  21. 21.
    Qiao Q-Q, Li G-R, Wang Y-L, Gao X-P (2016) To enhance the capacity of Li-rich layered oxides by surface modification with metal–organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries. J Mater Chem A 4(12):4440–4447.  https://doi.org/10.1039/c6ta00882h CrossRefGoogle Scholar
  22. 22.
    Kumar A, Nazzario R, Torres-Castro L, Pena-Duarte A, Tomar MS (2015) Electrochemical properties of MgO-coated 0.5Li2MnO3-0.5LiNi0.5Mn0.5O2 composite cathode material for lithium ion battery. Int J Hydrog Energy 40(14):4931–4935.  https://doi.org/10.1016/j.ijhydene.2015.01.104 CrossRefGoogle Scholar
  23. 23.
    Ahn J, Kim JH, Cho BW, Chung KY, Kim S, Choi JW, Oh SH (2017) Nanoscale zirconium-abundant surface layers on lithium- and manganese-rich layered oxides for high-rate lithium-ion batteries. Nano Lett 17(12):7869–7877.  https://doi.org/10.1021/acs.nanolett.7b04158 CrossRefPubMedGoogle Scholar
  24. 24.
    Mu, K.; Cao, Y.; Hu, G.; Du, K.; Yang, H.; Gan, Z.; Peng, Z. (2018) Enhanced electrochemical performance of Lirich cathode Li1.2Ni0.2Mn0.6O2 by surface modification with WO3 for lithium ion batteries. Electrochimica Acta 273:88–97Google Scholar
  25. 25.
    Lan X, Xin Y, Wang L, Hu X (2018) Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries. J Nanopart Res 20(3).  https://doi.org/10.1007/s11051-018-4165-y
  26. 26.
    Liu H, Harris KJ, Jiang M, Wu Y, Goward GR, Botton GA (2018) Unraveling the rapid performance decay of layered high-energy cathodes: from nanoscale degradation to drastic bulk evolution. ACS Nano 12(3):2708–2718.  https://doi.org/10.1021/acsnano.7b08945 CrossRefPubMedGoogle Scholar
  27. 27.
    Zheng JM, Li J, Zhang ZR, Guo XJ, Yang Y (2008) The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics 179(27–32):1794–1799.  https://doi.org/10.1016/j.ssi.2008.01.091 CrossRefGoogle Scholar
  28. 28.
    Yuan W, Zhang HZ, Liu Q, Li GR, Gao XP (2014) Surface modification of Li (Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim Acta 135:199–207.  https://doi.org/10.1016/j.electacta.2014.04.181 CrossRefGoogle Scholar
  29. 29.
    Wu Y, Manthiram A (2009) Effect of surface modifications on the layered solid solution cathodes (1-z) Li[Li1/3Mn2/3]O2-(z) Li[Mn0.5-yNi0.5-yCo2y]O2. Solid State Ionics 180(1):50–56.  https://doi.org/10.1016/j.ssi.2008.11.002 CrossRefGoogle Scholar
  30. 30.
    Liu H, Liu H (2016) Preparing micro/nano dumbbell-shaped CeO2 for high performance electrode materials. J Alloys Compd 681:342–349.  https://doi.org/10.1016/j.jallcom.2016.04.207 CrossRefGoogle Scholar
  31. 31.
    Wu F, Wang M, Su Y, Bao L, Chen S (2009) Surface of LiCo1/3Ni1/3Mn1/3O2 modified by CeO2-coating. Electrochim Acta 54(27):6803–6807.  https://doi.org/10.1016/j.electacta.2009.06.075 CrossRefGoogle Scholar
  32. 32.
    Yao J, Wu F, Qiu X, Li N, Su Y (2011) Effect of CeO2-coating on the electrochemical performances of LiFePO4/C cathode material. Electrochim Acta 56(16):5587–5592.  https://doi.org/10.1016/j.electacta.2011.03.141 CrossRefGoogle Scholar
  33. 33.
    Aboulaich A, Ouzaouit K, Faqir H, Kaddami A, Benzakour I, Akalay I (2016) Improving thermal and electrochemical performances of LiCoO2 cathode at high cut-off charge potentials by MF3 (M=Ce, Al) coating. Mater Res Bull 73:362–368.  https://doi.org/10.1016/j.materresbull.2015.09.020 CrossRefGoogle Scholar
  34. 34.
    Wei J, Liang Y, Hu Y, Kong B, Simon GP, Zhang J, Jiang SP, Wang HA (2016) Versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction. Angew Chem Int Ed Eng 55(4):1355–1359.  https://doi.org/10.1002/anie.201311136 CrossRefGoogle Scholar
  35. 35.
    Park J, Choi S, Moon H, Seo H, Kim J, Hong SP, Lee B, Kang E, Lee J, Ryu D, Choi IS (2017) Antimicrobial spray nanocoating of supramolecular Fe (III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits. Sci Rep 7(1):6980–6986.  https://doi.org/10.1038/s41598-017-07257-x CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhou C-X, Wang P-B, Zhang B, Zheng J-C, Zhou Y-Y, Huang C-H, Xi X-M (2018) Suppressing the voltage fading of Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material via Al2O3 coating for Li-ion batteries. J Electrochem Soc 165(9):A1648–A1655.  https://doi.org/10.1149/2.0441809jes CrossRefGoogle Scholar
  37. 37.
    Li X, Liu J, Meng X, Tang Y, Banis MN, Yang J, Hu Y, Li R, Cai M, Sun X (2014) Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. J Power Sources 247:57–69.  https://doi.org/10.1016/j.jpowsour.2013.08.042 CrossRefGoogle Scholar
  38. 38.
    Wu JH, Yang L, Liu H (2015) Synthesis and electrochemical properties of spherical nano-structured and nano-agglomerated Li1.2Mn0.6Ni0.2O2 cathode materials for lithium-ion batteries. Integr Ferroelectr 164(1):52–59.  https://doi.org/10.1080/10584587.2015.1044359 CrossRefGoogle Scholar
  39. 39.
    Guo J, Ping Y, Ejima H, Alt K, Meissner M, Richardson JJ, Yan Y, Peter K, von Elverfeldt D, Hagemeyer CE, Caruso F (2014) Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew Chem Int Ed Eng 53(22):5546–5551.  https://doi.org/10.1002/anie.201311136 CrossRefGoogle Scholar
  40. 40.
    Ghanty C, Chatterjee S, Basu RN, Majumder SB (2013) Effect of structural integration on electrochemical properties of 0.5Li2MnO3-0.5Li(Mn0.375Ni0.375Co0.25)O2 composite cathodes for lithium rechargeable batteries. J Electrochem Soc 160(9):A1406–A1414.  https://doi.org/10.1149/2.040309jes CrossRefGoogle Scholar
  41. 41.
    Wu F, Li N, Su Y, Lu H, Zhang L, An R, Wang Z, Bao L, Chen S (2012) Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials. J Mater Chem 22(4):1489–1497.  https://doi.org/10.1039/c1jm14459f CrossRefGoogle Scholar
  42. 42.
    Huang X, Liu H, Liu J, Liu H (2017) Synthesis of micro sphere CeO2 by a chemical precipitation method with enhanced electrochemical performance. Mater Lett 193:115–118.  https://doi.org/10.1016/j.matlet.2017.01.090 CrossRefGoogle Scholar
  43. 43.
    Kosova NV, Devyatkina ET, Kaichev VV (2007) Optimization of Ni2+/Ni3+ ratio in layered Li (Ni, Mn, Co)O2 cathodes for better electrochemistry. J Power Sources 174(2):965–969.  https://doi.org/10.1016/j.jpowsour.2007.06.051 CrossRefGoogle Scholar
  44. 44.
    Arumugam D, Kalaignan GP (2010) Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries. Electrochim Acta 55(28):8709–8716.  https://doi.org/10.1016/j.electacta.2010.08.016 CrossRefGoogle Scholar
  45. 45.
    Zhou L-J, Yin Z-L, Ding Z-Y, Li X-H, Wang Z-X, Guo H-J (2017) CeO2 coating to improve the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2. Ionics 24(9):2533–2542.  https://doi.org/10.1007/s11581-017-2387-0 CrossRefGoogle Scholar
  46. 46.
    Liu K, Yang G-L, Dong Y, Shi T, Chen L (2015) Enhanced cycling stability and rate performance of Li [Ni0.5Co0.2Mn0.3]O2 by CeO2 coating at high cut-off voltage. J Power Sources 281:370–377.  https://doi.org/10.1016/j.jpowsour.2014.12.131 CrossRefGoogle Scholar
  47. 47.
    Gao C, Liu H, Liu G, Zhang J, Wang W (2013) High-rate performance of xLiFePO4•yLi3V2(PO4)3/C composite cathode materials synthesized via polyol process. Mater Sci Eng B 178(4):272–276.  https://doi.org/10.1016/j.mseb.2012.11.016 CrossRefGoogle Scholar
  48. 48.
    Ding X, Xiao L-N, Li Y-X, Tang Z-F, Wan J-W, Wen Z-Y, Chen C-H (2018) Improving the electrochemical performance of Li-rich Li1.2Ni0.2Mn0.6O2 by using Ni-Mn oxide surface modification. J Power Sources 390:13–19.  https://doi.org/10.1016/j.jpowsour.2018.04.034 CrossRefGoogle Scholar
  49. 49.
    Li F, Sun YY, Yao ZH, Cao JS, Wang YL, Ye SH (2015) Enhanced initial coulombic efficiency of Li1.14Ni0.16Co0.08Mn0.57O2 cathode materials with superior performance for lithium-ion batteries. Electrochim Acta 182:723–732.  https://doi.org/10.1016/j.electacta.2015.08.163 CrossRefGoogle Scholar
  50. 50.
    Lu Z, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) Synthesis, structure, and electrochemical behavior of Li [NixLi1/3-2x/3Mn2/3-x/3]O2. J Electrochem Soc 149(6):A778–A791.  https://doi.org/10.1149/1.1471541 CrossRefGoogle Scholar
  51. 51.
    Deng M, Li S, Hong W, Jiang Y, Xu W, Shuai H, Zou G, Hu Y, Hou H, Wang W, Ji X (2019) Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Mater Chem Phys 223:46–52.  https://doi.org/10.1016/j.matchemphys.2018.10.043 CrossRefGoogle Scholar
  52. 52.
    Hou H, Shao L, Zhang Y, Zou G, Chen J, Ji X (2017) Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv Sci (Weinh) 4(1):1600243.  https://doi.org/10.1002/advs.201600243 CrossRefGoogle Scholar
  53. 53.
    Jin X, Xu Q, Liu X, Yuan X, Liu H (2016) Improvement in rate capability of lithium-rich cathode material Li[Li0.2Ni0.13Co0.13Mn0.54]O2 by Mo substitution. Ionics 22(8):1369–1376.  https://doi.org/10.1007/s11581-016-1675-4 CrossRefGoogle Scholar
  54. 54.
    Zhang XD, Shi JL, Liang JY, Yin YX, Zhang JN, Yu XQ, Guo YG (2018) Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv Mater 30:e1801751.  https://doi.org/10.1002/adma.201801751 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Advanced Energy Materials, College of Materials Science and EngineeringSichuan UniversityChengduPeople’s Republic of China
  2. 2.Department of Materials EngineeringSichuan College of Architectural TechnologyDeyangPeople’s Republic of China
  3. 3.Department of Civil EngineeringSichuan College of Architectural TechnologyDeyangPeople’s Republic of China
  4. 4.Innovation and Practice Base for PostdoctorsChengdu PolytechnicChengduPeople’s Republic of China

Personalised recommendations