Advertisement

Ionics

, Volume 25, Issue 7, pp 3197–3210 | Cite as

Flower-like ZnO/ionic liquid composites: structure, morphology, and photocatalytic activity

  • Letícia G. da TrindadeEmail author
  • Letícia Zanchet
  • Aline B. Trench
  • Josiane Carneiro Souza
  • Maria H. Carvalho
  • Adilson J. A. de Oliveira
  • Ernesto C. Pereira
  • Tatiana M. Mazzo
  • Elson Longo
Original Paper
  • 101 Downloads

Abstract

Two ionic liquids (ILs) with different alkyl chains, 1-butyl-3-methylimidazolium chloride (BMI.Cl) and 1-hexadecyl-3-methylimidazolium chloride (C16MI.Cl), were incorporated into ZnO particles using the microwave-assisted hydrothermal (MAH) method. The morphology and microstructure of ZnO and ZnO/IL composites were characterized along with their photocatalytic effect for dye degradation. While the incorporation of ILs into the ZnO particles did not alter their morphology, it converted the shallow defects into deep defects. These changes improved Rhodamine B (RhB) photodegradation efficiency. The dye degradation reached 62% when ZnO/C1640 was used, whereas it reached 30% when pure ZnO was used, during the same time interval.

Graphical abstract

Keywords

ZnO Ionic liquid Optical properties Photocatalysis 

Notes

Acknowledgments

The support of this research by CAPES, FAPESP (2013/07296-2), and CNPq is gratefully acknowledged.

Supplementary material

11581_2018_2822_MOESM1_ESM.doc (1.1 mb)
ESM 1 (DOC 1110 kb)

References

  1. 1.
    Peter CN, Anku WW, Sharma R, Joshi GM, Shukla SK, Govender PP (2018) N-doped ZnO/graphene oxide: a photostable photocatalyst for improved mineralization and photodegradation of organic dye under visible light. Ionics.  https://doi.org/10.1007/s11581-018-2571-x
  2. 2.
    Baldez EE, Robaina NF, Cassella RJ (2008) Employment of polyurethane foam for the adsorption of methylene blue in aqueous medium. J Hazard Mater 159:580–586.  https://doi.org/10.1016/j.jhazmat.2008.02.055 CrossRefGoogle Scholar
  3. 3.
    Nagaraja R, Kottam N, Girija CR, Nagabhushana BM (2012) Photocatalytic degradation of rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol 215-216:91–97.  https://doi.org/10.1016/j.powtec.2011.09.014 CrossRefGoogle Scholar
  4. 4.
    Chen CC, Liu P, Lu CH (2008) Synthesis and characterization of nano-sized ZnO powders by direct precipitation method. Chem Eng J 144:509–513.  https://doi.org/10.1016/j.cej.2008.07.047 CrossRefGoogle Scholar
  5. 5.
    Khayyat AS, Akhta MS, Umar A (2012) ZnO nanocapsules for photocatalytic degradation of thionine. Mater Lett 81:239–241.  https://doi.org/10.1016/j.matlet.2012.04.039 CrossRefGoogle Scholar
  6. 6.
    Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32:12–17.  https://doi.org/10.1016/j.msec.2011.08.018 CrossRefGoogle Scholar
  7. 7.
    Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176.  https://doi.org/10.1002/adma.201500033 CrossRefGoogle Scholar
  8. 8.
    Zhou H, Qu Y, Zeid T, Duan X (2012) Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ Sci 5:6732–6743.  https://doi.org/10.1039/C2EE03447F CrossRefGoogle Scholar
  9. 9.
    Elango G, Roopan SM (2016) Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J Photochem Photobiol B 155:34–38.  https://doi.org/10.1016/j.jphotobiol.2015.12.010 CrossRefGoogle Scholar
  10. 10.
    Basahel SN, Ali TT, Mokhtar M, Narasimharao K (2015) Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res Lett 10:73–78.  https://doi.org/10.1186/s11671-015-0780-z CrossRefGoogle Scholar
  11. 11.
    Repo E, Rengaraj S, Pulkka S, Castangnoli E, Suihkonen S, Sopanen M, Sillanpää M (2013) Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation. Sep Purif Technol 120:206–214.  https://doi.org/10.1016/j.seppur.2013.10.008 CrossRefGoogle Scholar
  12. 12.
    La Porta FA, Nogueira AE, Gracia L, Pereira WS, Botelho G, Mulinari TA, Andrés J, Longo E (2017) An experimental and theoretical investigation on the optical and photocatalytic properties of ZnS nanoparticles. J Phys Chem Solids 103:179–189.  https://doi.org/10.1016/j.jpcs.2016.12.025 CrossRefGoogle Scholar
  13. 13.
    Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14.  https://doi.org/10.1016/j.apcatb.2003.11.010 CrossRefGoogle Scholar
  14. 14.
    Balcha A, Yadav OP, Dey T (2016) Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environ Sci Pollut Res Int 23:25485–25493.  https://doi.org/10.1007/s11356-016-7750-6 CrossRefGoogle Scholar
  15. 15.
    Ma S, Xue J, Zhou Y, Zhang Z (2014) Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity. J Mater Chem A 2:7272–7280.  https://doi.org/10.1039/C4TA00464G CrossRefGoogle Scholar
  16. 16.
    Ghosh A, Guha P, Samantara AK, Jena BK, Bar R, Ray SK, Satyam PV (2015) Simple growth of faceted Au–ZnO hetero-nanostructures on silicon substrates (nanowires and triangular nanoflakes): a shape and defect driven enhanced photocatalytic performance under visible light. ACS Appl Mater Interfaces 7(18):9486–9496.  https://doi.org/10.1021/acsami.5b00634 CrossRefGoogle Scholar
  17. 17.
    Sadeghia R, Karimi-Malehb H, Baharic A, Taghavi M (2013) A novel biosensor based on ZnO nanoparticle/1,3-dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine. Phys Chem Liq 51:704–714.  https://doi.org/10.1080/00319104.2013.782547 CrossRefGoogle Scholar
  18. 18.
    Zsilák Z, Szabó-Bárdos E, Fónagy O, Horváth O, Horváth K, Hajós P (2014) Degradation of benzenesulfonate by heterogeneous photocatalysis combined with ozonation. Catal Today 230:55–60.  https://doi.org/10.1016/j.cattod.2013.10.039 CrossRefGoogle Scholar
  19. 19.
    Carvalho RG, Tavares MTS, Oliveira FKF, Nascimento RM, Longo E, Li MS, Paskocimas CA, Bomio MRD, Motta FV (2017) Preparation and photocatalytic properties of hexagonal-shaped ZnO:Sm3+ by microwave-assisted hydrothermal method. J Mater Sci Mater Electron 28:7943–7950.  https://doi.org/10.1007/s10854-017-6496-3 CrossRefGoogle Scholar
  20. 20.
    Sin JC, Lam SM (2016) Hydrothermal synthesis of europium-doped flower-like ZnO hierarchical structures with enhanced sunlight photocatalytic degradation of phenol. Mater Lett 182:223–226.  https://doi.org/10.1016/j.matlet.2016.06.126 CrossRefGoogle Scholar
  21. 21.
    Soares AF, Tatumi SH, Mazzo TM, Rocca RR, Courrol LC (2017) Study of morphological and luminescent properties (TL and OSL) of ZnO nanocrystals synthetized by coprecipitation method. J Lumin 186:135–143.  https://doi.org/10.1016/j.jlumin.2017.02.028 CrossRefGoogle Scholar
  22. 22.
    Chen Y-Y, Kuo C-C, Chen B-Y, Chiu P-C, Tsai P-C (2015) Multifunctional polyacrylonitrile-ZnO/Ag electrospun nanofiber membranes with various ZnO morphologies for photocatalytic, UV-shielding, and antibacterial applications. J Polym Sci Part B Polym Phys 53:262–269.  https://doi.org/10.1002/polb.23621 CrossRefGoogle Scholar
  23. 23.
    Byzynski G, Melo C, Volanti DP, Ferrer MM, Gouveia AF, Ribeiro C, Andrés J, Longo E (2017) The interplay between morphology and photocatalytic activity in ZnO and N-doped ZnO crystals. Mater Des 120:363–375.  https://doi.org/10.1016/j.matdes.2017.02.020 CrossRefGoogle Scholar
  24. 24.
    Zhao S, Zhang YW, Zhou YM, Sheng XL, Zhang C, Zhang MY, Fang JS (2016) One-step synthesis of core-shell structured mesoporous silica spheres templated by protic ionic liquid and CTAB. Mater Lett 178:35–38.  https://doi.org/10.1016/j.matlet.2016.04.182 CrossRefGoogle Scholar
  25. 25.
    Noda A, Susan AB, Kudo K, Mitsushima S, Hayamizu K, Watanabe M (2003) Brønsted acid−base ionic liquids as proton-conducting nonaqueous electrolytes. J Phys Chem B 107:4024–4033.  https://doi.org/10.1021/jp022347p CrossRefGoogle Scholar
  26. 26.
    Bijad M, Karimi-Maleh H, Khalilzadeh MA (2013) Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal Methods 6:1639–1647.  https://doi.org/10.1007/s12161-013-9585-9 CrossRefGoogle Scholar
  27. 27.
    Taherkhani JT, Hadadzadeh H, Karimi-Maleh H, Beitollahi H, Taghavi M, Karimi F (2014) ZnO nanoparticle-modified ionic liquid-carbon paste electrode for voltammetric determination of folic acid in food and pharmaceutical samples. Ionics 20:421–429.  https://doi.org/10.1007/s11581-013-0992-0 CrossRefGoogle Scholar
  28. 28.
    Straumal BB, Protasova SG, Mazilkin AA, Goering E, Schütz G, Straumal PB, Baretzky B (2016) Ferromagnetism of zinc oxide nanograined films. J Nanotechnol 7:1936–1947.  https://doi.org/10.1134/S0021364013060143 Google Scholar
  29. 29.
    Cassol CC, Ebeling G, Ferrera B, Dupont J (2006) A simple and practical method for the preparation and purity determination of halide-free imidazolium ionic liquids. Adv Synth Catal 348:243–248.  https://doi.org/10.1002/adsc.200505295 CrossRefGoogle Scholar
  30. 30.
    Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst 22:151–152.  https://doi.org/10.1107/S0365110X67000234 CrossRefGoogle Scholar
  31. 31.
    Larson AC, Von Dreele RB (2004) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86–748. http://11bm.xray.aps.anl.gov/documents/GSASManual.pdf.
  32. 32.
    Badawy MI, Ali MEM, Ghaly MY, El-Missiry MA (2015) Mesoporous simonkolleite–TiO2 nanostructured composite for simultaneous photocatalytic hydrogen production and dye decontamination. Process Saf Environ 94:11–17.  https://doi.org/10.1016/j.psep.2014.12.001 CrossRefGoogle Scholar
  33. 33.
    Kim K-S, Demberelnyamba D, Lee H (2004) Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir 20:556–560.  https://doi.org/10.1021/la0355848 CrossRefGoogle Scholar
  34. 34.
    Montenegro DN, Hortelano V, Martínez O, Martínez-Tomas MC, Sallet V, Munoz-Sanjosé V, Jimenez J (2013) Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. J Phys D Appl Phys 46:235302.  https://doi.org/10.1088/0022-3727/46/23/235302 CrossRefGoogle Scholar
  35. 35.
    Zhang R, Yin PG, Wang N, Guo L (2009) Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci 11:865–869.  https://doi.org/10.1016/j.solidstatesciences.2008.10.016 CrossRefGoogle Scholar
  36. 36.
    Dodd AC, Mckinley AJ, Saunders M, Tsuzuki T (2006) Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. J Nanopart Res 8:43–51.  https://doi.org/10.1007/s11051-005-5131-z CrossRefGoogle Scholar
  37. 37.
    Otsuka M (2004) Comparative particle size determination of phenacetin bulk powder by using Kubelka–Munk theory and principal component regression analysis based on near-infrared spectroscopy. Powder Technol 141:244–250.  https://doi.org/10.1016/j.powtec.2004.01.025 CrossRefGoogle Scholar
  38. 38.
    Yi S, Zhao F, Yue X, Wang D, Lin Y (2015) Enhanced solar light-driven photocatalytic activity of BiOBr–ZnO heterojunctions with effective separation and transfer properties of photo-generated chargers. New J Chem 39:6659–6666.  https://doi.org/10.1039/C5NJ00707K CrossRefGoogle Scholar
  39. 39.
    Pal M, Bera S, Jana S (2015) Sol–gel based simonkolleite nanopetals with SnO2 nanoparticles in graphite-like amorphous carbon as an efficient and reusable photocatalyst. RSC Adv 5(92):75062–75074.  https://doi.org/10.1039/c5ra12322d CrossRefGoogle Scholar
  40. 40.
    Mazzo TM, Oliveira LMR, Macario LR, Avansi W Jr, André RS, Rosa ILV, Varela JA, Longo E (2014) Photoluminescence properties of CaTiO3:Eu3+ nanophosphor obtained by the polymeric precursor method. Mater Chem Phys 145:141–150.  https://doi.org/10.1016/j.matchemphys.2014.01.051 CrossRefGoogle Scholar
  41. 41.
    Longo VM, Cavalcante LS, Erlo R, Mastelaro VR, de Figueiredo AT, Sambrano JR, de Lázaro S, Freitas AZ, Gomes L, Vieira ND Jr, Varela JA, Longo E (2008) Strong violet–blue light photoluminescence emission at room temperature in SrZrO3: joint experimental and theoretical study. Acta Mater 56:2191–2202.  https://doi.org/10.1016/j.actamat.2007.12.059 CrossRefGoogle Scholar
  42. 42.
    Roy N, Roy A (2015) Growth and temperature dependent photoluminescence characteristics of ZnO tetrapods. Ceram Int 41:4154–4160.  https://doi.org/10.1016/j.ceramint.2014.11.113 CrossRefGoogle Scholar
  43. 43.
    Lin B, Fu Z, Jia Y, Liao G (2001) Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions. J Electrochem Soc 148:110–113.  https://doi.org/10.1149/1.1346616 CrossRefGoogle Scholar
  44. 44.
    Sithole J, Ngom BD, Khamlich S, Manikanadan E, Manyala N, Saboungi ML, Knoessen D, Nemutudi R, Maaza M (2012) Simonkolleitenano-platelets: synthesis and temperature effect on hydrogen gas sensing properties. Appl Surf Sci 258:7839–7843.  https://doi.org/10.1016/j.apsusc.2012.04.073 CrossRefGoogle Scholar
  45. 45.
    Yun HJ, Lee H, Joo JB, Kim W, Yi J (2009) Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid. J Phys Chem C 113:3050–3055.  https://doi.org/10.1021/jp808604t CrossRefGoogle Scholar
  46. 46.
    La Porta FA, Andres J, Vismara MVG, Graeff CFO, Sambrano JR, Li MS, Varela JA, Longo E (2014) Correlation between structural and electronic order–disorder effects and optical properties in ZnO nanocrystals. J Mater Chem C 2:10164–10174.  https://doi.org/10.1039/C4TC01248H CrossRefGoogle Scholar
  47. 47.
    Zheng P, Pan Z, Li H, Bai B, Guan W (2015) Effect of different type of scavengers on the photocatalytic removal of copper and cyanide in the presence of TiO2@yeast hybrids. J Mater Sci Mater Electron 26:6399–6410.  https://doi.org/10.1007/s10854-015-3229-3 CrossRefGoogle Scholar
  48. 48.
    Chen H, Zhu L, Liu H, Li W (2013) Zn5(OH)8Cl2·H2O-based quantum dots-sensitized solar cells: a common corrosion product enhances the performance of photoelectrochemical cells. Electrochim Acta 105:289–298.  https://doi.org/10.1016/j.electacta.2013.04.175 CrossRefGoogle Scholar
  49. 49.
    Moniem SMA, Ali MEM, Gad-Allah TA, Khalil ASG, Ulbricht M, El-Shahat MF, Ashmawy AM, Ibrahim HS (2015) Detoxification of hexavalent chromium in wastewater containing organic substances using simonkolleite-TiO2 photocatalyst. Process Saf Environ 95:247–254.  https://doi.org/10.1016/j.psep.2015.03.010 CrossRefGoogle Scholar
  50. 50.
    Khan M, Naqvi AH, Ahmad M (2015) Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicol Rep 2:765–774.  https://doi.org/10.1016/j.toxrep.2015.02.004 CrossRefGoogle Scholar
  51. 51.
    Tong Y, Yang H, Li J, Yang Y (2013) Extraction of Au(III) by ionic liquid from hydrochloric acid medium. Sep Purif Technol 120:367–372.  https://doi.org/10.1016/j.seppur.2013.10.028 CrossRefGoogle Scholar
  52. 52.
    Tanaka H, Fujioka A, Futoyu A, Kandori K, Ishikawa T (2007) Synthesis and characterization of layered zinc hydroxychlorides. J Solid State 180:2061–2066.  https://doi.org/10.1016/j.jssc.2007.05.001 CrossRefGoogle Scholar
  53. 53.
    Qu Q, Yan C, Wan Y, Cao C (2012) Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc. Corros Sci 44:2789–2803.  https://doi.org/10.1016/S0010-938X(02)00076-8. CrossRefGoogle Scholar
  54. 54.
    Dai T-F, Hsu W-C, Hsu H-C (2014) Improvement of photoluminescence and lasing properties in ZnO submicron spheres by elimination of surface-trapped state. Opt Express 22:27169–27174.  https://doi.org/10.1364/OE.22.027169 CrossRefGoogle Scholar
  55. 55.
    Kim W, Choi M, Yong K (2015) Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sensors Actuators B Chem 209:989–996.  https://doi.org/10.1016/j.snb.2014.12.072 CrossRefGoogle Scholar
  56. 56.
    Kim CH, Kim B-H (2015) Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. J Power Sources 274:512–520.  https://doi.org/10.1016/j.jpowsour.2014.10.126 CrossRefGoogle Scholar
  57. 57.
    Meng F, Ge F, Chen Y, Xu G, Huang F (2018) Local structural changes induced by ion bombardment in magnetron sputtered ZnO: Al films: Raman, XPS, and XAS study. Surf Coat Technol.  https://doi.org/10.1016/j.surfcoat.2018.04.013

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Letícia G. da Trindade
    • 1
    • 2
    Email author
  • Letícia Zanchet
    • 2
  • Aline B. Trench
    • 1
  • Josiane Carneiro Souza
    • 1
  • Maria H. Carvalho
    • 3
  • Adilson J. A. de Oliveira
    • 3
  • Ernesto C. Pereira
    • 1
  • Tatiana M. Mazzo
    • 4
  • Elson Longo
    • 1
  1. 1.Chemistry Department—CDMF/LIECUFSCarSão CarlosBrazil
  2. 2.Institute of ChemistryUFRGSPorto AlegreBrazil
  3. 3.Physics DepartmentUFSCarSão CarlosBrazil
  4. 4.Institute of Marine SciencesFederal University of São Paulo (UNIFESP)SantosBrazil

Personalised recommendations