, Volume 25, Issue 7, pp 3099–3106 | Cite as

Handheld spraying of g-C3N4 nanosheets on cathode for high-performance lithium-sulfur batteries

  • Fang Zhao
  • Ma Nani
  • Zhang Kun
  • Xie Keyu
  • Shen Chao
  • Peng Jiaxin
  • Dang Yangyang
  • Cheng Wudan
  • Zheng Dongdong
  • Li LinboEmail author
Original Paper


Lithium-sulfur batteries (Li-S) have been regarded as one of the most promising candidates for next-generation energy-storage systems due to its high theoretical energy density (2600 Wh/kg). However, the “shuttle effect” and the resulting self-discharge hinder the commercialization of Li-S batteries. In this study, a facile, inexpensive, and scalable spray-coating method was developed to cover a cathode with carbon nitride film (g-C3N4). Because of the strong adsorption of polysulfides by carbon nitride, the S-GF/C3N4 cathode exhibited a high reversible capacity of 927 mAh/g at 0.2 C and long cyclic stability of 720 mAh/g after 280 cycles with a high capacity retention up to 78% with the sulfur loading of 5 mg/cm2. This study presents a new pervasive spray-coating method to facilitate simple and large-scale membrane modification and to enable the practical application of Li-S batteries.


Li-S batteries Spray coating Carbon nitride Shuttle effect Self-discharge 


Funding information

This study was funded by the National Natural Science Foundation of China (51574191), the Natural Science Basic Research Plan in Shaanxi Province, China, (2018JM5135), and National Key R&D Program of China (2018YFB0104204).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2018_2821_MOESM1_ESM.pdf (639 kb)
ESM 1 (PDF 639 kb)


  1. 1.
    Goodenough J, Park K (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRefPubMedGoogle Scholar
  2. 2.
    Qin P, Li X, Gao B, Fu J, Xia L, Zhang X, Huo K, Shen W, Chu P (2018) Hierarchical TiN nanoparticles-assembled nanopillars for flexible supercapacitors with high volumetric capacitance. Nanoscale 10(18):8728–8734CrossRefPubMedGoogle Scholar
  3. 3.
    Gao B, Li X, Guo X, Zhang X, Peng X, Wang L, Fu J, Chu P, Huo K (2015) Nitrogen-doped carbon encapsulated mesoporous vanadium nitride nanowires as self-supported electrodes for flexible all-solid-state supercapacitors. Adv Mater Interfaces 2(13):1500211CrossRefGoogle Scholar
  4. 4.
    Mai L, Yan M, Zhao Y (2017) Track batteries degrading in real time. Nature News 546(7659):469–470CrossRefGoogle Scholar
  5. 5.
    Zhang L, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRefPubMedGoogle Scholar
  6. 6.
    Liu J, Zhang J, Yang Z, Lemmon J, Imhoff C, Graff G, Li L, Hu J, Wang C, Xiao J, Xia G, Viswanathan V, Baskaran S, Sprenkle V, Li X, Shao YY, Schwenzer B (2013) Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv Funct Mater 23(8):929–946CrossRefGoogle Scholar
  7. 7.
    Mahmood N, Zhang C, Jiang J, Liu F, Hou Y (2013) Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction. Chem Eur J 19(16):5183–5190CrossRefPubMedGoogle Scholar
  8. 8.
    Evarts E (2015) To the limits of lithium. Nature 526(7575):S93–S95CrossRefPubMedGoogle Scholar
  9. 9.
    Whittingham M (2012) History, evolution, and future status of energy storage. P IEEE 100(3):1518–1534CrossRefGoogle Scholar
  10. 10.
    Manthiram A, Fu Y, Su Y (2013) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46(5):1125–1134CrossRefPubMedGoogle Scholar
  11. 11.
    Li X, Ding K, Gao B, Li Q, Li Y, Fu J, Zhang X, Chu P, Huo K (2017) Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano Energy 40:655–662CrossRefGoogle Scholar
  12. 12.
    Wang N, Zhao N, Shi C, Liu E, He C, He F, Ma L (2017) In situ synthesized Li2S@porous carbon cathode for graphite/Li2S full cells using ether-based electrolyte. Electrochim Acta 256:348–356CrossRefGoogle Scholar
  13. 13.
    Peng H, Huang J, Zhang Q (2017) A review of flexible lithium-sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chem Soc Rev 46(17):5237–5288CrossRefPubMedGoogle Scholar
  14. 14.
    Gao B, Li X, Ding K, Huang C, Li Q, Chu P, Huo K (2019) Recent progress of nanostructured transition metal nitrides for advanced electrochemical energy storage. J Mater Chem A 7(1):14–37Google Scholar
  15. 15.
    Zhou G, Paek E, Hwang G, Manthiram A (2016) High-performance lithium-sulfur batteries with a self-supported, 3d Li2S-doped graphene aerogel cathodes. Adv Energy Mater 6(2):1501355–1501363CrossRefGoogle Scholar
  16. 16.
    Pope M, Aksay I (2015) Structural design of cathodes for Li-S batteries. Adv Energy Mater 5(16):1500124–1500145CrossRefGoogle Scholar
  17. 17.
    Pang Q, Kundu D, Cuisinier M, Nazar L (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun 5:4759CrossRefPubMedGoogle Scholar
  18. 18.
    Song J, Yu Z, Gordin M, Wang D (2015) Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett 16(2):864–870CrossRefGoogle Scholar
  19. 19.
    Winter M, Appel W, Evers B, Hodal T, Möller K, Schneider I, Wachtler M, Wagner M, Wrodnigg G, Besenhard J (2001) Studies on the anode/electrolyte interface in lithium ion batteries. Electroactive Materials Springer Vienna 132(4):473–486Google Scholar
  20. 20.
    Cheon S, Ko K, Cho J, Kim S, Chin E, Kim H (2003) Rechargeable lithium sulfur battery I. Structural change of sulfur cathode during discharge and charge. J Electrochem Soc 150(6):A796–A799CrossRefGoogle Scholar
  21. 21.
    Pang Q, Nazar L (2016) Long-life and high-areal-capacity Li–S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 10(4):4111–4118CrossRefPubMedGoogle Scholar
  22. 22.
    Liu J, Li W, Duan L, Li X, Ji L, Geng Z, Huang K, Lu L, Zhou L, Liu Z, Chen W, Liu L, Feng S, Zhang Y (2015) A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett 15(8):5137–5142CrossRefPubMedGoogle Scholar
  23. 23.
    Zhao L, Chen Y, Wang B, Sun C, Chakraborty S, Ramasubramanian K, Dutta P, Winstonho W (2016) Multilayer polymer/zeolite Y composite membrane structure for CO2 capture from flue gas. J Membr Sci 498:1–13CrossRefGoogle Scholar
  24. 24.
    Wu L, Shi S, Zhang X, Yang Y, Liu J, Tang S, Zhong S (2018) Room-temperature pre-reduction of spinning solution for the synthesis of Na3V2(PO4)3/C nanofibers as high-performance cathode materials for Na-ion batteries. Electrochim Acta 274:233–241CrossRefGoogle Scholar
  25. 25.
    Choi W, Byun D, Lee J, Cho B (2004) Electrochemical characteristics of silver- and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries. Electrochim Acta 50(2):523–529CrossRefGoogle Scholar
  26. 26.
    Fang Z, Yu H, Dang Y, Gao N, Ma N, Peng J, Xie K, Li L (2017) Electrochemical and printable properties of polydopamine decorated carbon nanotube ink. Sci Adv Mater 9(11):2039–2044CrossRefGoogle Scholar
  27. 27.
    Kumar N, Ginting R, Kang J (2018) Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT:PSS/reduced-graphene oxide. Electrochim Acta 270:37–47CrossRefGoogle Scholar
  28. 28.
    Wang X, Lu Q, Chen C, Han M, Wang Q, Li H, Niu Z, Chen J (2017) Consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates. ACS Appl Mater Interfaces 9(34):28612–28619CrossRefPubMedGoogle Scholar
  29. 29.
    Yi J, Liao K, Zhang C, Zhang T, Li F, Zhou H (2015) Facile in situ preparation of graphitic-C3N4@ carbon paper as an efficient metal-free cathode for nonaqueous Li-O2 battery. ACS Appl Mater Interfaces 7(20):10823–10827CrossRefPubMedGoogle Scholar
  30. 30.
    Mohammed M, Kramer R (2017) All-printed flexible and stretchable electronics. Adv Mater 29(19):1604965–1604971CrossRefGoogle Scholar
  31. 31.
    Han S, Jeong H, Tang H, Baek S, Kim S, Lee H (2017) Exploring the ultrasonic nozzle spray-coating technique for the fabrication of solution-processed organic electronics. Org Electron 49:212–217CrossRefGoogle Scholar
  32. 32.
    Zhuang Z, Li Y, Li Z, Lv F, Lang Z, Zhao K, Zhou L, Moskaleva L, Guo S, Mai L (2017) MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution. Angew Chem 130(2):505–509CrossRefGoogle Scholar
  33. 33.
    Moussa S, Atkinson G, Shall M, Shehata A, Zeid K, Mohamed M (2011) Laser assisted photocatalytic reduction of metal ions by graphene oxide. J Mater Chem 21(26):9608–9619CrossRefGoogle Scholar
  34. 34.
    Yan S, Li Z, Zou Z (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17):10397–10401CrossRefGoogle Scholar
  35. 35.
    Zheng Y, Liu J, Liang J, Jaroniecc M, Qiao S (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5(5):6717–6731CrossRefGoogle Scholar
  36. 36.
    Hou Y, Li J, Wen Z, Cui S, Yuan C, Chen J (2014) N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries. J Nano En 8(9):157–164CrossRefGoogle Scholar
  37. 37.
    Li Z, Xu R, Deng S, Sun X, Wu W, Liu S, Wu M (2018) MnS decorated N/S codoped 3D graphene which used as cathode of the lithium-sulfur battery. Appl Surf Sci 433:10–15CrossRefGoogle Scholar
  38. 38.
    Gong Y, Li M, Wang Y (2015) Carbon nitride in energy conversion and storage: recent advances and future prospects. CSSC 8(6):931–946Google Scholar
  39. 39.
    Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27(13):2150–2176CrossRefPubMedGoogle Scholar
  40. 40.
    Xu C, Zhou H, Fu C, Huang Y, Chen L, Yang L, Kuang Y (2017) Hydrothermal synthesis of boron-doped unzipped carbon nanotubes/sulfur composite for high-performance lithium-sulfur batteries. Electrochim Acta 232:156–163CrossRefGoogle Scholar
  41. 41.
    Gong Y, Yu J, Fu C, Zhang G, Zhou H, Fu C, Kuang F (2017) Three-dimensional porous C3N4 nanosheets@reduced graphene oxide network as sulfur hosts for high performance lithium-sulfur batteries. Electrochim Acta 256:1–9CrossRefGoogle Scholar
  42. 42.
    Wang W, Yu J, Xia D, Wong P, Li Y (2013) Graphene and g-C3N4 nanosheets cowrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ Sci Technol 47(15):8724–8732CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fang Zhao
    • 1
  • Ma Nani
    • 1
  • Zhang Kun
    • 2
  • Xie Keyu
    • 2
  • Shen Chao
    • 2
  • Peng Jiaxin
    • 1
  • Dang Yangyang
    • 1
  • Cheng Wudan
    • 1
  • Zheng Dongdong
    • 1
  • Li Linbo
    • 1
    Email author
  1. 1.School of Metallurgical EngineeringXi’an University of Architecture and TechnologyXi’anChina
  2. 2.State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi’anChina

Personalised recommendations