Advertisement

Ionics

, Volume 25, Issue 3, pp 1259–1270 | Cite as

Microstructure, phase composition, and gas-sensing properties of nanostructured ZrO2-xY2O3 thin films and powders obtained by the sol-gel method

  • Artem S. MokrushinEmail author
  • Elizaveta P. Simonenko
  • Nikolay P. Simonenko
  • Kirill A. Bukunov
  • Vladimir G. Sevastyanov
  • Nikolay T. Kuznetsov
Original Paper
  • 51 Downloads

Abstract

With the use of sol-gel technology, we obtained ZrO2-xY2O3 powders and thin films (where х = 0, 5, 10, 15, 20, 33, 40, 50 mol%) that are promising for the creation of chemical gas sensors. The phase composition was studied using XRD and Raman spectroscopy. It has been shown that an increase in the content of yttrium oxide from 0 to 50 mol% entails phase changes in the structure of zirconium dioxide—from the monoclinic phase (ZrO2) to metastable tetragonal (up to 10% of Y2O3), cubic (up to 20% of Y2O3), and rhombohedral (up to 50% of Y2O3) phases. For thin films, gas-sensing properties were studied: we established a resistive response to oxygen at low operating temperatures of 350–450 °C that increased with an increase in the Y2O3 content in the crystal lattice. Films with a Y2O3 content of more than 33 mol% showed a resistive response to hydrogen.

Graphical abstract

Keywords

Sol-gel Yttrium-stabilized zirconium Gas sensor Thin films RAMAN spectroscopy 

Notes

Funding information

The work was supported by the Russian Foundation for Basic Research (grant No. 18-03-00992).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    UHMS Committtee HOC (2014) Hyperbaric Oxygen Therapy Indications. Durham, USAGoogle Scholar
  2. 2.
    Kishimoto A, Hasunuma H, Teranishi T, Hayashi H (2015) Stabilisation dopant-dependent facilitation in ionic conductivity on millimeter-wave irradiation heating of zirconia-based ceramics. J Alloys Compd 648:740–744.  https://doi.org/10.1016/j.jallcom.2015.07.057 CrossRefGoogle Scholar
  3. 3.
    Joo JH, Choi GM (2006) Electrical conductivity of YSZ film grown by pulsed laser deposition. Solid State Ionics 177:1053–1057.  https://doi.org/10.1016/j.ssi.2006.04.008 CrossRefGoogle Scholar
  4. 4.
    Omar S, Bin Najib W, Chen W, Bonanos N (2012) Electrical conductivity of 10 mol% Sc2O3-1 mol% M2O3-ZrO2 ceramics. J Am Ceram Soc 95:1965–1972.  https://doi.org/10.1111/j.1551-2916.2012.05126.x CrossRefGoogle Scholar
  5. 5.
    Ihara M, Kusano T, Yokoyama C (2001) Competitive adsorption reaction mechanism of Ni/yttria-stabilized zirconia cermet anodes in H2-H2O solid oxide fuel cells. J Electrochem Soc 148:A209.  https://doi.org/10.1149/1.1345873 CrossRefGoogle Scholar
  6. 6.
    Subbarao EC, Maiti HS (1984) Solid electrolytes with oxygen ion conduction. Solid State Ionics 11:317–338.  https://doi.org/10.1016/0167-2738(84)90024-9 CrossRefGoogle Scholar
  7. 7.
    Ruff O, Ebert F, Stephan E (1929) Beitrage zur Keramik hochfeuerfester Stoffe II. Das System ZrO2-CaO. Z anorg allg Chem 180:215–224.  https://doi.org/10.1002/zaac.19291800122 CrossRefGoogle Scholar
  8. 8.
    Ruff O, Ebert F (1929) Beitrage zur Keramik hochfeuerfester Stoffe. l. Die Formen des Zirkondioxyds. Z anorg allg Chem 180:19–41.  https://doi.org/10.1002/zaac.19291800104 CrossRefGoogle Scholar
  9. 9.
    Yashima M, Kakihana M, Yoshimura M (1996) Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ionics 86–88:1131–1149.  https://doi.org/10.1016/0167-2738(96)00386-4 CrossRefGoogle Scholar
  10. 10.
    Yashima M, Arashi H, Kakihana M, Yoshimura M (1994) Raman scattering study of cubic-tetragonal phase transition in ZrCeO2. J Am Ceram Soc 77:1067–1071.  https://doi.org/10.1111/j.1151-2916.1994.tb07270.x CrossRefGoogle Scholar
  11. 11.
    Goff J, Hayes W, Hull S et al (1999) Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys Rev B 59:14202–14219.  https://doi.org/10.1103/PhysRevB.59.14202 CrossRefGoogle Scholar
  12. 12.
    Cousland GP, Cui XY, Ringer S, Smith AE, Stampfl APJ, Stampfl CM (2014) Electronic and vibrational properties of yttria-stabilised zirconia from first-principles for 10-40 mol% Y2O3. J Phys Chem Solids 75:1252–1264.  https://doi.org/10.1016/j.jpcs.2014.05.015 CrossRefGoogle Scholar
  13. 13.
    Hemberger Y, Wichtner N, Berthold C, Nickel KG (2016) Quantification of yttria in stabilized zirconia by Raman spectroscopy. Int J Appl Ceram Technol 13:116–124.  https://doi.org/10.1111/ijac.12434 CrossRefGoogle Scholar
  14. 14.
    Fábregas IO, Craievich AF, Fantini MCA, Millen RP, Temperini MLA, Lamas DG (2011) Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion. J Alloys Compd 509:5177–5182.  https://doi.org/10.1016/j.jallcom.2011.01.213 CrossRefGoogle Scholar
  15. 15.
    Norby T, Kofstad P (1984) Electrical conductivity and defects structure of Y2O3 as a function of water vapor pressure. J Am Ceram Soc 67:786–792CrossRefGoogle Scholar
  16. 16.
    Norby T, Kofstad P (1986) Direct-current conductivity of Y2O3 as a function of water vapor pressure. J Am Ceram Soc 69:780–783.  https://doi.org/10.1111/j.1151-2916.1986.tb07359.x CrossRefGoogle Scholar
  17. 17.
    Norby T, Kofstad P (1986) Proton and native-ion conductivities in Y2O3 at high temperatures. Solid State Ionics 20:169–184.  https://doi.org/10.1016/0167-2738(86)90211-0 CrossRefGoogle Scholar
  18. 18.
    Shafer MW, ROY R (1959) Rare-earth polymorphism and phase equilibria in rare-earth oxide-water systems. J Am Ceram Soc 42:563–570.  https://doi.org/10.1111/j.1151-2916.1959.tb13574.x CrossRefGoogle Scholar
  19. 19.
    Ramamoorthy R, Dutta PK, Akbar SA (2003) Oxygen sensors: materials, methods, designs. J Mater Sci 38:4271–4282CrossRefGoogle Scholar
  20. 20.
    Cirera A, Lpez-Gándara C, Ramos FM (2009) YSZ-based oxygen sensors and the use of nanomaterials: a review from classical models to current trends. J Sensors 2009:1–15.  https://doi.org/10.1155/2009/258489 Google Scholar
  21. 21.
    Lari A, Khodadadi A, Mortazavi Y (2009) Semiconducting metal oxides as electrode material for YSZ-based oxygen sensors. Sensors Actuators B Chem 139:361–368.  https://doi.org/10.1016/j.snb.2009.03.003 CrossRefGoogle Scholar
  22. 22.
    Xia C, Lu X, Yan Y et al (2011) Preparation of nano-structured Pt-YSZ composite and its application in oxygen potentiometric sensor. Appl Surf Sci 257:7952–7958.  https://doi.org/10.1016/j.apsusc.2011.04.005 CrossRefGoogle Scholar
  23. 23.
    Fischer S, Pohle R, Magori E, Fleischer M, Moos R (2014) Detection of NO by pulsed polarization technique using Pt interdigital electrodes on yttria-stabilized zirconia. Procedia Engineering 87:620–623.  https://doi.org/10.1016/j.proeng.2014.11.565 CrossRefGoogle Scholar
  24. 24.
    Zhuiykov S, Miura N (2007) Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: what are the prospects for sensors? Sensors Actuators B Chem 121:639–651.  https://doi.org/10.1016/j.snb.2006.03.044 CrossRefGoogle Scholar
  25. 25.
    Lu G, Diao Q, Yin C, Yang S, Guan Y, Cheng X, Liang X (2014) High performance mixed-potential type NOx sensor based on stabilized zirconia and oxide electrode. Solid State Ionics 262:292–297.  https://doi.org/10.1016/j.ssi.2014.01.037 CrossRefGoogle Scholar
  26. 26.
    Yin C, Guan Y, Zhu Z, Liang X, Wang B, Diao Q, Zhang H, Ma J, Liu F, Sun Y, Zheng J, Lu G (2013) Highly sensitive mixed-potential-type NO2 sensor using porous double-layer YSZ substrate. Sensors Actuators B Chem 183:474–477.  https://doi.org/10.1016/j.snb.2013.03.064 CrossRefGoogle Scholar
  27. 27.
    Rheaume JM, Pisano AP (2011) A review of recent progress in sensing of gas concentration by impedance change. Ionics 17:99–108.  https://doi.org/10.1007/s11581-010-0515-1 CrossRefGoogle Scholar
  28. 28.
    Di Bartolomeo E, Grilli ML, Yoon JW, Traversa E (2004) Zirconia-based electrochemical NOx sensors with semiconducting oxide electrodes. J Am Ceram Soc 87:1883–1889.  https://doi.org/10.1111/j.1151-2916.2004.tb06335.x CrossRefGoogle Scholar
  29. 29.
    Mori M, Itagaki Y, Sadaoka Y (2012) VOC detection by potentiometric oxygen sensor based on YSZ and modified Pt electrodes. Sensors Actuators B Chem 161:471–479.  https://doi.org/10.1016/j.snb.2011.10.063 CrossRefGoogle Scholar
  30. 30.
    Mori M, Nishimura H, Itagaki Y, Sadaoka Y, Traversa E (2009) Detection of sub-ppm level of VOCs based on a Pt/YSZ/Pt potentiometric oxygen sensor with reference air. Sensors Actuators B Chem 143:56–61.  https://doi.org/10.1016/j.snb.2009.09.001 CrossRefGoogle Scholar
  31. 31.
    Mori M, Sadaoka Y, Nakagawa S, Kida M, Kojima T (2013) Development of ethanol and toluene sensing devices with a planar-type structure based on YSZ and modified Pt electrodes. Sensors Actuators B Chem 187:509–513.  https://doi.org/10.1016/j.snb.2013.03.005 CrossRefGoogle Scholar
  32. 32.
    Dimitrov DT, Dushkin CD, Petrova NL, Todorovska RV, Todorovsky DS, Anastasova SY, Oliver DH (2007) Oxygen detection using junctions based on thin films of yttria-stabilized zirconia doped with platinum nanoparticles and pure yttria-stabilized zirconia. Sensors Actuators A Phys 137:86–95.  https://doi.org/10.1016/j.sna.2007.02.022 CrossRefGoogle Scholar
  33. 33.
    Simonenko NP, Simonenko EP, Mokrushin AS, Popov VS, Vasiliev AA, Sevastyanov VG, Kuznetsov NT (2017) Thin films of the composition 8%Y2O3–92%ZrO2 (8YSZ) as gas-sensing materials for oxygen detection. Russ J Inorg Chem 62:695–701.  https://doi.org/10.1134/S0036023617060213 CrossRefGoogle Scholar
  34. 34.
    Bae JW, Park JY, Hwang SW, Yeom GY, Kim KD, Cho YA, Jeon JS, Choi D (2000) Characterization of yttria-stabilized zirconia thin films prepared by radio frequency magnetron sputtering for a combustion control oxygen sensor. J Electrochem Soc 147:2380–2384CrossRefGoogle Scholar
  35. 35.
    Jiang J, Hu X, Shen W, Ni C, Hertz JL (2013) Improved ionic conductivity in strained yttria-stabilized zirconia thin films. Appl Phys Lett 102:143901.  https://doi.org/10.1063/1.4801649 CrossRefGoogle Scholar
  36. 36.
    Sentosa D, Liu B, Wong LM, Lim YV, Wong TI, Foo YL, Sun HD, Wang SJ (2011) Temperature dependent photoluminescence studies of ZnO thin film grown on (111) YSZ substrate. J Cryst Growth 319:8–12.  https://doi.org/10.1016/j.jcrysgro.2011.01.029 CrossRefGoogle Scholar
  37. 37.
    Aydin H, Korte C, Rohnke M, Janek J (2013) Oxygen tracer diffusion along interfaces of strained Y2O3/YSZ multilayers. Phys Chem Chem Phys 15:1944–1955.  https://doi.org/10.1039/C2CP43231E CrossRefGoogle Scholar
  38. 38.
    Kosacki I, Rouleau CM, Becher PF et al (2005) Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics 176:1319–1326.  https://doi.org/10.1016/j.ssi.2005.02.021 CrossRefGoogle Scholar
  39. 39.
    Amézaga-Madrid P, Antúnez-Flores W, González-Hernández J, Sáenz-Hernández J, Campos-Venegas K, Solís-Canto O, Ornelas-Gutiérrez C, Vega-Becerra O, Martínez-Sánchez R, Miki-Yoshida M (2010) Microstructural properties of multi-nano-layered YSZ thin films. J Alloys Compd 495:629–633.  https://doi.org/10.1016/j.jallcom.2009.10.257 CrossRefGoogle Scholar
  40. 40.
    Wang HB, Xia CR, Meng GY, Peng DK (2000) Deposition and characterization of YSZ thin films by aerosol-assisted CVD. Mater Lett 44:23–28.  https://doi.org/10.1016/S0167-577X(99)00291-8 CrossRefGoogle Scholar
  41. 41.
    Chao CC, Park JS, Tian X, Shim JH, Gür TM, Prinz FB (2013) Enhanced oxygen exchange on surface-engineered yttria-stabilized zirconia. ACS Nano 7:2186–2191.  https://doi.org/10.1021/nn305122f CrossRefGoogle Scholar
  42. 42.
    Gadea C, Hanniet Q, Lesch A, Marani D, Jensen SH, Esposito V (2017) Aqueous metal–organic solutions for YSZ thin film inkjet deposition. J Mater Chem C 5:6021–6029.  https://doi.org/10.1039/C7TC01879G CrossRefGoogle Scholar
  43. 43.
    Sekhar PK, Sarraf H, Mekonen H, Mukundan R, Brosha EL, Garzon FH (2013) Impedance spectroscopy based characterization of an electrochemical propylene sensor. Sensors Actuators B Chem 177:111–115.  https://doi.org/10.1016/j.snb.2012.10.137 CrossRefGoogle Scholar
  44. 44.
    Simonenko NP, Simonenko EP, Sevastyanov VG, Kuznetsov NT (2015) Production of 8%Y2O3-92%ZrO2 (8YSZ) thin films by sol-gel technology. Russ J Inorg Chem 60:878–886.  https://doi.org/10.1134/S0036023615070153
  45. 45.
    Simonenko NP, Simonenko EP, Sevastyanov VG, Kuznetsov NT (2016) Preparation of nanostructured thin films of yttrium aluminum garnet (Y3Al5O12) by sol—gel technology. Russ J Inorg Chem 61:805–810.  https://doi.org/10.1134/S003602361606019X
  46. 46.
    Sevastyanov VG, Simonenko EP, Simonenko NP et al (2018) Sol-gel made titanium dioxide nanostructured thin films as gas-sensing material for oxygen detection. Mendeleev Commun 28:164–166.  https://doi.org/10.1016/j.mencom.2018.03.018 CrossRefGoogle Scholar
  47. 47.
    Skandan G, Foster CM, Frase H, Ali MN, Parker JC, Hahn H (1992) Phase characterization and stabilization due to grain size effects of nanostructured Y2O3. Nanostruct Mater 1:313–322.  https://doi.org/10.1016/0965-9773(92)90038-Y CrossRefGoogle Scholar
  48. 48.
    Sevast’yanov VG, Simonenko EP, Simonenko NP, Kuznetsov NT (2012) Synthesis of ultrafine refractory oxides zirconia-hafnia-yttria by sol-gel technology. Russ J Inorg Chem 57:307–312.  https://doi.org/10.1134/S0036023612030278 CrossRefGoogle Scholar
  49. 49.
    Yashima M, Ohtake K, Arashi H, Kakihana M, Yoshimura M (1993) Determination of cubic-tetragonal phase boundary in Zr1-XYXO2-X/2 solid solutions by Raman spectroscopy. J Appl Phys 74:7603–7605.  https://doi.org/10.1063/1.354989 CrossRefGoogle Scholar
  50. 50.
    Winter MR, Clarke DR (2007) Oxide materials with low thermal conductivity. J Am Ceram Soc 90:533–540.  https://doi.org/10.1111/j.1551-2916.2006.01410.x CrossRefGoogle Scholar
  51. 51.
    Siu GG, Stokes MJ, Liu Y (1999) Variation of fundamental and higher-order raman spectra of ZrO2 nanograins with annealing temperature. Phys Rev B 59:3173–3179.  https://doi.org/10.1103/PhysRevB.59.3173 CrossRefGoogle Scholar
  52. 52.
    Roy A, Sood AK (1995) Phonons and fractons in sol-gel alumina: Raman study. Pramana J Phys 44:201–209.  https://doi.org/10.1007/BF02848471
  53. 53.
    Putilov LP, Tsidilkovski VI, Varaksin AN, Fishman AY (2012) Thermodynamics of Defect Formation and Hydration of Y2O3. Def Dif Forum 326–328:126–131 .  https://doi.org/10.4028/www.scientific.net/DDF.326-32 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Artem S. Mokrushin
    • 1
    Email author
  • Elizaveta P. Simonenko
    • 1
  • Nikolay P. Simonenko
    • 1
  • Kirill A. Bukunov
    • 2
    • 3
  • Vladimir G. Sevastyanov
    • 1
  • Nikolay T. Kuznetsov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations