, Volume 25, Issue 2, pp 483–492 | Cite as

Understanding the effect of electrolyte on the cycle and structure stability of high areal capacity Si-Al film electrode

  • Jie ZhangEmail author
  • Chuanjie Shen
  • Ping Liu
  • Yongmin Qiao
Original Paper


High areal capacity silicon-based films are attracting much attention in high energy density lithium-ion batteries (LIBs). However, the enormous volume change of Si, causing film crack and instability of solid electrolyte interphase (SEI) layer, leads to a rapid capacity decay. In this work, the structure evolution and electrochemical performance of Si-Al film (~ 2.5 mAh cm-2) are systematically investigated by galvanostatic discharge/charge test, field-emission scanning electron microscopy (FESEM), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). Particularly, the inner structure is carefully analyzed by the cross-sectional images. In the EC-based and FEC-added electrolytes, the columnar structure is remained. Interestingly, the rigid SEI layer formed in FEC-based electrolyte restrains the surface tensile stress, and the Si-Al film is cracked from the inner part and further rearranged towards compact piling up during cycling. The new formed film displays a weak volume expansion and an improved capacity retention of 85.0% after 100 cycles.


Si-based film Electrolyte additive Solid electrolyte interphase Lithium-ion battery 


Funding information

This work was sponsored by Shanghai Sailing Program (17YF1413500).


  1. 1.
    Manthiram A, Knight JC, Myung S-T, Oh S-M, Sun Y-K (2016) Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater
  2. 2.
    Ko M, Oh P, Chae S, Cho W, Cho J (2015) Considering critical factors of Li-rich cathode and Si anode materials for practical Li-ion cell applications. Small 11:4058–4073CrossRefGoogle Scholar
  3. 3.
    Lu J, Chen Z, Ma Z, Pan F, Curtiss LA, Amine K (2016) The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotechnol 11:1031–1038CrossRefGoogle Scholar
  4. 4.
    Chen G, Yan L, Luo H, Guo S (2016) Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv Mater 28:7580–7602CrossRefGoogle Scholar
  5. 5.
    Yan Y, Ben L, Zhan Y, Huang X (2016) Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochim Acta 187:186–192CrossRefGoogle Scholar
  6. 6.
    Ma D, Cao Z, Hu A (2014) Si-based anode materials for Li-ion batteries: a mini review. Nano-Micro Lett 6:347–358CrossRefGoogle Scholar
  7. 7.
    Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429CrossRefGoogle Scholar
  8. 8.
    Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6:1522–1531CrossRefGoogle Scholar
  9. 9.
    Yu J, Yang J, Feng X, Jia H, Wang J, Lu W (2014) Uniform carbon coating on silicon nanoparticles by dynamic CVD process for electrochemical lithium storage. Ind Eng Chem Res 53:12697–12704CrossRefGoogle Scholar
  10. 10.
    Kasukabe T, Nishihara H, Iwamura S, Kyotani T (2016) Remarkable performance improvement of inexpensive ball-milled Si nanoparticles by carbon-coating for Li-ion batteries. J Power Sources 319:99–103CrossRefGoogle Scholar
  11. 11.
    Gueon D, Lee J, Lee JK, Moon JH (2016) Carbon-coated silicon nanoparticle-embedded carbon sphere assembly electrodes with enhanced performance for lithium-ion batteries. RSC Adv 6:38012–38017CrossRefGoogle Scholar
  12. 12.
    Salvatierra RV, Raji A-RO, Lee S-K, Ji Y, Li L, Tour JM (2016) Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Adv Energy Mater
  13. 13.
    Chakrapani V, Rusli F, Filler MA, Kohl PA (2011) Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery. J Phys Chem C 115:22048–22053CrossRefGoogle Scholar
  14. 14.
    Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7:310–315CrossRefGoogle Scholar
  15. 15.
    Takezawa H, Ito S, Yoshizawa H, Abe T (2017) Surface composition of a SiOx film anode cycled in carbonate electrolyte for Li-ion batteries. Electrochim Acta 229:438–444CrossRefGoogle Scholar
  16. 16.
    Reyes Jiménez A, Klöpsch R, Wagner R, Rodehorst UC, Kolek M, Nölle R, Winter M, Placke T (2017) A step toward high-energy silicon-based thin film lithium ion batteries. ACS Nano 11:4731–4744CrossRefGoogle Scholar
  17. 17.
    Wu C-Y, Chang C-C, Duh J-G (2016) Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode. J Power Sources 325:64–70CrossRefGoogle Scholar
  18. 18.
    Farmakis F, Elmasides C, Fanz P, Hagen M, Georgoulas N (2015) High energy density amorphous silicon anodes for lithium ion batteries deposited by DC sputtering. J Power Sources 293:301–305CrossRefGoogle Scholar
  19. 19.
    Piwko M, Thieme S, Weller C, Althues H, Kaskel S (2017) Enabling electrolyte compositions for columnar silicon anodes in high energy secondary batteries. J Power Sources 362:349–357CrossRefGoogle Scholar
  20. 20.
    Farmakis F, Elmasides C, Selinis P, Georgoulas N (2017) Impact of electrolyte on the electrochemical performance of Lithium-ion half and full cells with Silicon film anodes. Electrochim Acta 245:99–106CrossRefGoogle Scholar
  21. 21.
    Fridman K, Sharabi R, Elazari R, Gershinsky G, Markevich E, Salitra G, Aurbach D, Garsuch A, Lampert J (2013) A new advanced lithium ion battery: Combination of high performance amorphous columnar silicon thin film anode, 5V LiNi0.5Mn1.5O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution. Electrochem Commun 33:31–34CrossRefGoogle Scholar
  22. 22.
    Piwko M, Kuntze T, Winkler S, Straach S, Härtel P, Althues H, Kaskel S (2017) Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries. J Power Sources 351:183–191CrossRefGoogle Scholar
  23. 23.
    Liu P, Zheng J, Qiao Y, Li H, Wang J, Wu M (2014) Fabrication and characterization of porous Si-Al films anode with different macroporous substrates for lithium-ion batteries. J Solid State Electrochem 18:1799–1806CrossRefGoogle Scholar
  24. 24.
    Zhang S, He M, Su C-C, Zhang Z (2016) Advanced electrolyte/additive for lithium-ion batteries with silicon anode. Curr Opin Chem Eng 13:24–35CrossRefGoogle Scholar
  25. 25.
    Luo F, Chu G, Xia X, Liu B, Zheng J, Li J, Li H, Gu C, Chen L (2015) Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries. Nanoscale 7:7651–7658CrossRefGoogle Scholar
  26. 26.
    Shobukawa H, Alvarado J, Yang Y, Meng YS (2017) Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell. J Power Sources 359:173–181CrossRefGoogle Scholar
  27. 27.
    Choi N-S, Yew KH, Lee KY, Sung M, Kim H, Kim S-S (2006) Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J Power Sources 161:1254–1259CrossRefGoogle Scholar
  28. 28.
    Shkrob IA, Wishart JF, Abraham DP (2015) What makes fluoroethylene carbonate different? J Phys Chem C 119:14954–14964CrossRefGoogle Scholar
  29. 29.
    Nakai H, Kubota T, Kita A, Kawashima A (2011) Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J Electrochem Soc 158:A798–A801CrossRefGoogle Scholar
  30. 30.
    Petibon R, Chevrier VL, Aiken CP, Hall DS, Hyatt SR, Shunmugasundaram R, Dahn JR (2016) Studies of the capacity fade mechanisms of LiCoO2/Si-alloy: graphite cells. J Electrochem Soc 163:A1146–A1156CrossRefGoogle Scholar
  31. 31.
    Chen X, Li X, Mei D, Feng J, Hu MY, Hu J, Engelhard M, Zheng J, Xu W, Xiao J, Liu J, Zhang J-G (2014) Reduction mechanism of fluoroethylene carbonate for stable solid–electrolyte interphase film on silicon anode. ChemSusChem 7:549–554CrossRefGoogle Scholar
  32. 32.
    Soto FA, Martinez de la Hoz JM, Seminario JM, Balbuena PB (2016) Modeling solid-electrolyte interfacial phenomena in silicon anodes. Curr Opin Chem Eng 13:179–185CrossRefGoogle Scholar
  33. 33.
    Jung R, Metzger M, Haering D, Solchenbach S, Marino C, Tsiouvaras N, Stinner C, Gasteiger HA (2016) Consumption of fluoroethylene carbonate (FEC) on Si-C composite electrodes for Li-ion batteries. J Electrochem Soc 163:A1705–A1716CrossRefGoogle Scholar
  34. 34.
    Chen L, Wang K, Xie X, Xie J (2006) Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive. Electrochem Solid-State Lett 9:A512–A515CrossRefGoogle Scholar
  35. 35.
    Soto FA, Ma Y, Martinez de la Hoz JM, Seminario JM, Balbuena PB (2015) Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries. Chem Mater 27:7990–8000CrossRefGoogle Scholar
  36. 36.
    Haruta M, Okubo T, Masuo Y, Yoshida S, Tomita A, Takenaka T, Doi T, Inaba M (2017) Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives. Electrochim Acta 224:186–193CrossRefGoogle Scholar
  37. 37.
    Nguyen CC, Lucht BL (2016) Improved cycling performance of Si nanoparticle anodes via incorporation of methylene ethylene carbonate. Electrochem Commun 66:71–74CrossRefGoogle Scholar
  38. 38.
    Han G-B, Lee J-N, Choi JW, Park J-K (2011) Tris(pentafluorophenyl) borane as an electrolyte additive for high performance silicon thin film electrodes in lithium ion batteries. Electrochim Acta 56:8997–9003CrossRefGoogle Scholar
  39. 39.
    Han G-B, Ryou M-H, Cho KY, Lee YM, Park J-K (2010) Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode. J Power Sources 195:3709–3714CrossRefGoogle Scholar
  40. 40.
    Dalavi S, Guduru P, Lucht BL (2012) Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes. J Electrochem Soc 159:A642–A646CrossRefGoogle Scholar
  41. 41.
    Fleischauer MD, Obrovac MN, Dahn JR (2008) Al–Si thin-film negative electrodes for Li-ion batteries. J Electrochem Soc 155:A851–A854CrossRefGoogle Scholar
  42. 42.
    Dalla Corte DA, Gouget-Laemmel AC, Lahlil K, Caillon G, Jordy C, Chazalviel J-N, Gacoin T, Rosso M, Ozanam F (2016) Molecular grafting on silicon anodes: artificial solid-electrolyte interphase and surface stabilization. Electrochim Acta 201:70–77CrossRefGoogle Scholar
  43. 43.
    Lee JG, Kim J, Lee JB, Park H, Kim H-S, Ryu JH, Jung DS, Kim EK, Oh SM (2017) Mechanical damage of surface films and failure of nano-sized silicon electrodes in lithium ion batteries. J Electrochem Soc 164:A6103–A6109CrossRefGoogle Scholar
  44. 44.
    Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich DM (2001) Aluminum negative electrode in lithium ion batteries. J Power Sources 97–98:185–187CrossRefGoogle Scholar
  45. 45.
    Zhang Q, Liu J, Wu Z-Y, Li J-T, Huang L, Sun S-G (2016) 3D nanostructured multilayer Si/Al film with excellent cycle performance as anode material for lithium-ion battery. J Alloys Compd 657:559–564CrossRefGoogle Scholar
  46. 46.
    Takezawa H, Iwamoto K, Ito S, Yoshizawa H (2013) Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries. J Power Sources 244:149–157CrossRefGoogle Scholar
  47. 47.
    Schroder K, Alvarado J, Yersak TA, Li J, Dudney N, Webb LJ, Meng YS, Stevenson KJ (2015) The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes. Chem Mater 27:5531–5542CrossRefGoogle Scholar
  48. 48.
    Tokranov A, Kumar R, Li C, Minne S, Xiao X, Sheldon BW (2016) Control and optimization of the electrochemical and mechanical properties of the solid electrolyte interphase on silicon electrodes in lithium ion batteries. Adv Energy Mater

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jie Zhang
    • 1
    Email author
  • Chuanjie Shen
    • 2
  • Ping Liu
    • 1
  • Yongmin Qiao
    • 1
  1. 1.Shanghai Shanshan Tech. Co., Ltd.ShanghaiChina
  2. 2.Shanghai Institute of Space Power-SourcesShanghaiChina

Personalised recommendations