, Volume 25, Issue 6, pp 2845–2856 | Cite as

A new sensor based on glassy carbon electrode modified with Fe3O4@MCM-48-SO3H/multi-wall carbon nanotubes composite for simultaneous determination of norepinephrine and tyrosine in the presence of ascorbic acid

  • Akbar Yousefi
  • Ali BabaeiEmail author
Original Paper


In this study, a novel method was developed to fabricate a glassy carbon electrode (GCE) modified by a composition of multi-walled carbon nanotubes (MWCNTs) and Fe3O4@MCM-48-SO3H nanoparticles (MWCNTs-Fe3O4@MCM-48-SO3H/GCE) as a sensitive anionic composite layer for simultaneous determination of norepinephrine (NE) and tyrosine (Tyr) in the presence of ascorbic acid (AA). Electrochemical behavior of the electrode was studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) and chronoamperometry (CA) techniques. Under the optimum conditions, the modified electrode provides a linear anodic peak versus NE concentrations in the range of 0.4–600 μM with a detection limit of 0.19 μM and Tyr concentrations in the range of 0.9–400 μM with a detection limit of 0.28 μM, respectively, using the differential pulse voltammetry method. The modified electrode has been successfully applied for the determination of NE and Tyr in real samples.


Norepinephrine Tyrosine Ascorbic acid Multi-walled carbon nanotubes Fe3O4@MCM-48-SO3H nanoparticles 


Funding information

The authors would like to gratefully acknowledge the research council of Arak University for providing financial support for this work.

Supplementary material

11581_2018_2815_MOESM1_ESM.doc (446 kb)
ESM 1 (DOC 446 kb)


  1. 1.
    Fauci AS, Kasper DL, Longo DL, Braunwald E, Hauser L, Jameson JL, Loscalzo J (2008) Harrison’s principles of internal medicine, vol 2, 17th edn. Wiley, New York, pp 2470–2471.
  2. 2.
    Babaei A, Zendehdel M, Khalilzadeh B, Abnosi B (2010) A new sensor for simultaneous determination of tyrosine and dopamine using iron(III) doped zeolite modified carbon paste electrode. Chin J Chem 28:1967–1972. CrossRefGoogle Scholar
  3. 3.
    Azuma Y, Maekawa M, Kuwabara Y, Nakajima T, Taniguchi K, Kanno T (1989) Determination of branched-chain amino acids and tyrosine in serum of patients with various hepatic diseases, and its clinical usefulness. Clin Chem 3:1399Google Scholar
  4. 4.
    Sabine L, Jean PG, Joelle S, Bernard B (1997) Determination of the l-DOPA/l-tyrosine ratio in human plasma by high-performance liquid chromatography: usefulness as a marker in metastatic malignant melanoma. J Chromatography B 696:9CrossRefGoogle Scholar
  5. 5.
    Andrensek S, Golc-Wondra A, Prosek M (2003) Determination of phenylalanine and tyrosine by liquid chromatography/mass spectrometry. J AOAC Int 86:753–758Google Scholar
  6. 6.
    Deng C, Deng Y, Wang B, Yang X (2002) Gas chromatography-mass spectrometry method for determination of phenylalanine and tyrosine in neonatal blood spots. J Chromatogr B Analyt Technol Biomed Life Sci 780:407–413CrossRefGoogle Scholar
  7. 7.
    Grenier A, Laberge C (1974) A modified automated fluorometric method for tyrosine determination in blood spotted on paper: a mass screening procedure for tyrosinemia. Clin Chim Acta 57:71–75. CrossRefGoogle Scholar
  8. 8.
    Jin G-P, Lin X-Q (2004) The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine. Electrochem Commun 6:454–460. CrossRefGoogle Scholar
  9. 9.
    D’Souza OJ, Mascarenhas RJ, Satpati AK, Aiman LV, Mekhalif Z (2015) Electrocatalytic oxidation of L-tyrosine at carboxylic acid functionalized multi-walled carbon nanotubes modified carbon paste electrode. Ionics 22:404–414. Google Scholar
  10. 10.
    Katzung BG (2004) Basic & clinical pharmacology, 9th edn. McGraw Hill, New York, pp 132–133Google Scholar
  11. 11.
    Zhu M, Huang X, Li J, Shen H (1997) Peroxidase-based spectrophotometric methods for the determination of ascorbic acid, norepinephrine, epinephrine, dopamine and levodopa. Anal Chim Acta 357:261–267. CrossRefGoogle Scholar
  12. 12.
    Warnhoff M (1984) Simultaneous determination of norepinephrine, dopamine, 5-hydroxytryptamine and their main metabolites in rat brain using high-performance liquid chromatography with electrochemical detection: enzymatic hydrolysis of metabolites prior to chromatography. J Chromatogr 307:271–281. CrossRefGoogle Scholar
  13. 13.
    Wei S, Song G, Lin J-M (2005) Separation and determination of norepinephrine, epinephrine and isoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum. J Chromatogr A 1098:166–171. CrossRefGoogle Scholar
  14. 14.
    Renzini V, Brunori CA, Valori C (1970) A sensitive and specific fluorimetric method for the determination of noradrenalin and adrenalin in human plasma. Clin Chim Acta 30:587–594. CrossRefGoogle Scholar
  15. 15.
    Mazloum-Ardakani M, Sheikh-Mohseni MA, Mirjalili B-F (2014) Nanomolar detection limit for determination of norepinephrine in the presence of acetaminophen and tryptophan using carbon nanotube-based electrochemical sensor. Ionics 20:431–437. CrossRefGoogle Scholar
  16. 16.
    Beitollahi H, Mohadesi A, Khalilizadeh-Mahani S (2012) New voltammetric strategy for simultaneous determination of norepinephrine, acetaminophen, and folic acid using a 5-amino-3′,4′-dimethoxy-biphenyl-2-ol/carbon nanotube paste electrode. Ionics 18:703–710. CrossRefGoogle Scholar
  17. 17.
    Murai S, Saito H, Masuda Y, Itolh T (1988) Rapid determination of norepinephrine, dopamine, serotonin, their precursor amino acids, and related metabolites in discrete brain areas of mice within ten minutes by HPLC with electrochemical detection. J Neurochem 50:473–479. CrossRefGoogle Scholar
  18. 18.
    Jeong H, Jeon S (2008) Determination of dopamine in the presence of ascorbic acid by nafion and single-walled carbon nanotube film modified on carbon fiber microelectrode. Sensors 8:6924–6935. CrossRefGoogle Scholar
  19. 19.
    Rodríguez MC, Rubianes MD, Rivas GA (2008) Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine. J Nanosci Nanotechnol 8:6003–6009. CrossRefGoogle Scholar
  20. 20.
    Vidya H, Kumara Swamy BE (2015) Voltammetric determination of dopamine in the presence of ascorbic acid and uric acid at sodium dodecyl sulphate/reduced graphene oxide modified carbon paste electrode. J Mol Liq 211:705–711. CrossRefGoogle Scholar
  21. 21.
    Hu C, Hu S (2009) Carbon nanotube-based electrochemical sensors: principles and applications in biomedical systems. J Sens 2009:187615, 40 pages. CrossRefGoogle Scholar
  22. 22.
    Afrasiabi M, Kianipour S, Babaei A, Nasimi AA, Shabanian M (2013) A new sensor based on glassy carbon electrode modified with nanocomposite for simultaneous determination of acetaminophen, ascorbic acid and uric acid. J Saudi Chem Soc 20:S480–S487. CrossRefGoogle Scholar
  23. 23.
    Baghayeri M, Sedrpoushan A, Mohammadi A, Heidari M (2017) A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics 23:1553–1562. CrossRefGoogle Scholar
  24. 24.
    Babaei A, Yousefi A, Afrasiabi M, Shabanian M (2015) A sensitive simultaneous determination of dopamine, acetaminophen and indomethacin on a glassy carbon electrode coated with a new composite of MCM-41 molecular sieve/nickel hydroxide nanoparticles/multiwalled carbon nanotubes. J Electroanal Chem 740:28–36. CrossRefGoogle Scholar
  25. 25.
    Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. Top Appl Phys 80:391–425CrossRefGoogle Scholar
  26. 26.
    Vairavapandian D, Vichchulada P, Lay MD (2008) Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. Anal Chim Acta 626:119–129. CrossRefGoogle Scholar
  27. 27.
    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRefGoogle Scholar
  28. 28.
    Satyanarayana M, Yugender Goud K, Koteshwara Reddy K, Vengatajalabathy Gobi K (2017) Conducting polymer-layered carbon nanotube as sensor Interface for electrochemical detection of dacarbazine in-vitro. Electrocatalysis 8:214–223. CrossRefGoogle Scholar
  29. 29.
    Babaei A, Afrasiabi M (2015) A glassy carbon electrode modified with MCM-41/nickel hydroxide nanoparticle/multiwalled carbon nanotube composite as a sensor for the simultaneous determination of dopamine, piroxicam, and cefixime. Ionics 21:1731–1740. CrossRefGoogle Scholar
  30. 30.
    Anderson MW (1997) Simplified description of MCM-48. Zeolites 19:220–227CrossRefGoogle Scholar
  31. 31.
    Vallet-Regi M, Balas F (2008) Silica materials for medical applications. Open Biomed Eng J 2:1–9. CrossRefGoogle Scholar
  32. 32.
    Matei D, Cursaru DL, Mihai S (2016) Preparation of MCM-48 mesoporous molecular sieve influence of preparation conditions on the structural properties. Dig J Nanomater Biostruct 11:271–276Google Scholar
  33. 33.
    Kefayati H, Golshekan M, Shariati S, Bagheri M (2015) Fe3O4@MCM-48–SO3H: an efficient magnetically separable nanocatalyst for the synthesis of benzo[f]chromeno[2,3-d]pyrimidinones. Chin J Catal 36:572–578. CrossRefGoogle Scholar
  34. 34.
    Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New York, p 229Google Scholar
  35. 35.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28. CrossRefGoogle Scholar
  36. 36.
    Wang X, Cheng Y, You Z, Sha H, Gong S, Liu J, Sun W (2015) Sensitive electrochemical determination of oxalic acid in spinach samples by a graphene-modified carbon ionic liquid electrode. Ionics 21:877–884. CrossRefGoogle Scholar
  37. 37.
    Afrasiabi M, Kianipour S (2015) Simultaneous determination of ascorbic acid, uric acid and acetaminophen on a glassy carbon electrode coated with a novel single walled carbon nanotubes/chitosan/MCM-41 composite. Anal Bioanal Electrochem 7:331–343Google Scholar
  38. 38.
    Molaakbari E, Mostafavi A, Beitollahi H (2014) First electrochemical report for simultaneous determination of norepinephrine, tyrosine and nicotine using a nanostructure based sensor. Electroanalysis 26:2252–2260. CrossRefGoogle Scholar
  39. 39.
    Taei M, Ramazani G (2014) Simultaneous determination of norepinephrine, acetaminophen and tyrosine by differential pulse voltammetry using Au-nanoparticles/poly(2-amino-2-hydroxymethyl-propane-1,3-diol)film modified glassy carbon electrode. Colloids Surf B: Biointerfaces 123:23–32. CrossRefGoogle Scholar
  40. 40.
    Behpour M, Masoum S, Meshki M (2013) Study and electrochemical determination of tyrosine at graphene nanosheets composite film modified glassy carbon electrode. J Nanostruct 3:243–251Google Scholar
  41. 41.
    Quintana C, Suárez S, Hernández L (2010) Nanostructures on gold electrodes for the development of an l-tyrosine electrochemical sensor based on host–guest supramolecular interactions. Sensors Actuators B 149:129–135. CrossRefGoogle Scholar
  42. 42.
    Fan Y, Liu JH, Lu HT, Zhang Q (2011) Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Microchim Acta 173:241–247. CrossRefGoogle Scholar
  43. 43.
    Arvand M, Gholizadeh TM (2013) Simultaneous voltammetric determination of tyrosine and paracetamol using a carbon nanotube-graphene nanosheet nanocomposite modified electrode in human blood serum and pharmaceuticals. Colloids Surf B: Biointerfaces 103:84–93. CrossRefGoogle Scholar
  44. 44.
    Mazloum-Ardakani M, Beitollahi M, Sheikh-Mohseni MA, Naeimi H, Taghaviniac N (2010) Novel nanostructure electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of high concentrations of acetaminophen and folic acid. Appl Catal A Gen 378:195–201. CrossRefGoogle Scholar
  45. 45.
    Ma M, Chen M, Li X, Purushothaman A, Li F (2012) Electrochemical detection of norepinephrine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode. Int J Electrochem Sci 7:991–1000Google Scholar
  46. 46.
    Wang J, Li M, Shi Z, Li N, Gu Z (2002) Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis 14:225–230CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryArak UniversityArakIran
  2. 2.Research Center for NanotechnologyArak UniversityArakIran

Personalised recommendations