, Volume 25, Issue 6, pp 2791–2803 | Cite as

Soft-templating and hydrothermal synthesis of NiCo2O4 nanomaterials on Ni foam for high-performance supercapacitors

  • Zhenzhen Zeng
  • Lingzhi ZhuEmail author
  • Enshan Han
  • Xuechun Xiao
  • Yiran Yao
  • Lamei Sun
Original Paper


Nickel cobalt oxide (NiCo2O4) was successfully grown on the nickel foam by a mild hydrothermal method combined with a simple annealing treatment, utilizing SDS, PVP, CTAB, and PVA as template agents. The effect of different template agents on the morphology and electrochemical performance of NiCo2O4 electrode for supercapacitor was further investigated in detail. The physicochemical properties of the NiCo2O4 materials were examined via the X-ray diffraction and the scanning electron microscopy. It could be seen from the XRD patterns that there were no other clear clutter peaks, which indicated that the purity of the material was relatively high. As shown by the SEM diagram, the prepared NiCo2O4 showed different morphology structures via the addition of the template agent, which exhibited high capacitance and cycling stability. Specially, the NiCo2O4 electrode with the usage of 0.75 g SDS, PVP, CTAB, PVA, and none template agents showed high capacitance of 1357, 1469, 1290.6, 1297.4, and 863.8 F g−1 at 1 A g−1. In addition, asymmetric supercapacitors (ASC) were assembled with the brilliant binary oxides as the positive electrode, activated carbon as negative electrode, and 6 mol/L KOH solution as electrolyte. The ASC device demonstrated a high energy density of 64.76 Wh kg−1 at a power density of 774.8 W kg−1. Remarkably, it still displayed desirable cycle retention of 84.39% over 5000 cycle numbers at a current density of 10 A g−1, and the excellent electrochemical performance suggested its potential application in electrode material for supercapacitor.


Nickel cobalt oxide Template agents Electrochemical performance Asymmetric supercapacitors 



  1. 1.
    Hu H, Guan B, Xia B, Lou XW(D) (2015) Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J Am Chem Soc 137(16):5590–5595Google Scholar
  2. 2.
    Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3(9):1238–1251Google Scholar
  3. 3.
    Zhang Q, Chen H, Wang J, Xu D, Li X, Yang Y, Zhang K (2014) Growth of hierarchical 3D mesoporous NiSix/NiCo2O4 core/shell heterostructures on nickel foam for lithium-ion batteries. ChemSusChem 7:2325–2334Google Scholar
  4. 4.
    Bai X, Liu Q, Liu J et al (2017) Hierarchical Co3O4@Ni(OH)2 Core-shell nanosheet arrays for isolated all-solid state supercapacitor electrodes with superior electrochemical performance. Chem Eng J 315:35–45Google Scholar
  5. 5.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828Google Scholar
  6. 6.
    Fu G, Ma L, Gan M, Zhang X, Jin M, Lei Y, Yang P, Yan M (2017) Fabrication of 3D spongia-shaped polyaniline/MoS2, nanospheres composite assisted by polyvinylpyrrolidone (PVP) for high-performance supercapacitors. Synth Met 224:36–45Google Scholar
  7. 7.
    Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XWD (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24(38):5166–5180Google Scholar
  8. 8.
    Kaempgen M, Chan CK, Ma J et al (2015) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9(5):1872Google Scholar
  9. 9.
    Niu ZQ, Luan PS, Shao Q et al (2012) A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ 5:8726–8733Google Scholar
  10. 10.
    Chee WK, Lim HN, Zainal Z, Harrison I, Andou Y, Huang NM, Altarawneh M, Jiang ZT (2017) Electrospun graphene nanoplatelets-reinforced carbon nanofibers as potential supercapacitor electrode. Mater Lett 199:200–203Google Scholar
  11. 11.
    Pohl M, Kurig H, Tallo I, Jänes A, Lust E (2017) Novel sol-gel synthesis route of carbide-derived carbon composites for very high power density supercapacitors. Chem Eng J 320:576–587Google Scholar
  12. 12.
    Yao M, Hu Z, Xu Z, Liu Y, Liu P, Zhang Q (2015) Template synthesis and characterization of nanostructured hierarchical meso-porous ribbon-like NiO as high performance electrode material for supercapacitor. Electrochem Acta 158(5):96–104Google Scholar
  13. 13.
    Liu T, Finn L, Yu M, Wang H, Zhai T, Lu X, Tong Y, Li Y (2014) Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett 14(5):2522–2527Google Scholar
  14. 14.
    Zhang LJ, Hui KN, Hui KS et al (2016) High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode. Power Sources 318:76–85Google Scholar
  15. 15.
    Lin LY, Lin LY et al (2017) Material effects on the electrocapacitive performance for the energy-storage electrode with nickel cobalt oxide core/shell nanostructures. Electrochim Acta 250:335–347Google Scholar
  16. 16.
    Cui B, Lin H, Li J et al (2010) Core-ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv Funct Mater 18(9):1440–1447Google Scholar
  17. 17.
    Zhang J, Liu F, Cheng JP, Zhang XB (2015) Binary nickel-cobalt oxides electrode materials for high-performance supercapacitors: influence of its composition and porous nature. ACS Appl Mater Interfaces 7(32):17630–17640Google Scholar
  18. 18.
    Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv Mater 22:347–351Google Scholar
  19. 19.
    Zhang C, Geng X, Tang S, Deng M, Du Y (2017) NiCo2O4@rGO hybrid nanostructures on Ni foam as high-performance supercapacitor electrodes. Mater Chem A 5:5912–5919Google Scholar
  20. 20.
    Huang Y, Ip WS, Lau YY, Sun J, Zeng J, Yeung NSS, Ng WS, Li H, Pei Z, Xue Q, Wang Y, Yu J, Hu H, Zhi C (2017) Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability. ACS Nano 11(9):8953–8961Google Scholar
  21. 21.
    Liu C, Jiang W, Hu F, et al. 2018 Mesoporous NiCo2O4 nanoneedle arrays as supercapacitor electrode materials with excellent cycling stabilities. Inorg Chem Front, 5(4):835–843Google Scholar
  22. 22.
    Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730Google Scholar
  23. 23.
    Shen L, Qian C, Li H et al (2014) Mesoporous NiCo2O4, nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24(18):2630–2637Google Scholar
  24. 24.
    Hsu HY, Chang KH, Salunkhe RR, Hsu CT, Hu CC (2013) Synthesis and characterization of mesoporous Ni-Co oxy-hydroxides for pseudocapacitor application. Electrochim Acta 94(4):104–112Google Scholar
  25. 25.
    Meher SK, Justin P, Rao GR (2011) Nanoscale morphology dependent pseudocapacitance of NiO: influence of intercalating anions during synthesis. Nanoscale 3(2):683–692Google Scholar
  26. 26.
    Zhu Y, Wang J, Wu Z et al (2015) An electrochemical exploration of hollow NiCo2O4 submicrospheres and its capacitive performances. J Power Sources 287(ISSN):307–315Google Scholar
  27. 27.
    Khalid S, Cao C, Lin W et al (2016) Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci Rep 6:22699Google Scholar
  28. 28.
    An C, Wang Y, Huang Y et al (2013) Novel three-dimensional NiCo2O4 hierarchitectures: solvothermal synthesis and electrochemical properties. Crystengcomm 16(3):385–392Google Scholar
  29. 29.
    Zhang H, Gu J, Jiang Y, Zhao J, Zhang X, Wang C (2014) Effects of sodium dodecyl sulfate on the electrochemical behavior of supercapacitor electrode MnO2. J Solid State Electrochem 18(1):235–247Google Scholar
  30. 30.
    Ding R, Qi L, Jia MJ, Wang HY (2013) Hydrothermal and soft-templating synthesis of mesoporous NiCo2O4 nanomaterials for high-performance electrochemical capacitors. J Appl Electrochem 43:903–910Google Scholar
  31. 31.
    Wang H, Lu J, Yao S, Zhang W (2018) Sodium dodecyl sulfate-assisted synthesis of flower-like NiCo2O4, microspheres with large specific surface area for supercapacitors. J Alloys Compd 744:187–195Google Scholar
  32. 32.
    Wang YJ, Zhang SH, Wei K et al (2006) Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater Lett 60:1484–1487Google Scholar
  33. 33.
    Umeshbabu E, Rajeshkhanna G, Rao GR (2014) Urchin and sheaf-like NiCo2O4, nanostructures: synthesis and electrochemical energy storage application. Int J Hydrog Energy 39(28):15627–15638Google Scholar
  34. 34.
    Kong LB, Liu MC, Luo YC et al (2013) Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4. J Solid State Electrochem 17(5):1463–1471Google Scholar
  35. 35.
    Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4):3206–3213Google Scholar
  36. 36.
    Shen L, Uchaker E, Zhang X, Cao G (2012) Hydrogenated Li(4)Ti(5)O(12) nanowire arrays for high rate lithium ion batteries. Adv Mater 24(48):6502–6506Google Scholar
  37. 37.
    Lin Z, Yan X, Lang J, Wang R, Kong LB (2015) Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods. J Power Sources 279:358–364Google Scholar
  38. 38.
    Xu Y, Wang L, Cao P, Cai C, Fu Y, Ma X (2016) Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors. J Power Sources 306:742–752Google Scholar
  39. 39.
    Gao Z, Yang W, Wang J, Song N, Li X (2015) Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy 13:306–317Google Scholar
  40. 40.
    Salunkhe RR, Jang K, Yu H, Yu S, Ganesh T, Han SH, Ahn H (2011) Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. JAlloys Compd 509(23):6677–6682Google Scholar
  41. 41.
    Sun SM, Wang PY, Fang SM et al (2015) Fabrication of MnO2/nanoporous 3D graphene for supercapacitor electrodes. Mater Lett 145:141–144Google Scholar
  42. 42.
    Wu C, Zhu Y, Ding M, Jia C, Zhang K (2018) Fabrication of plate-like MnO2 with excellent cycle stability for supercapacitor electrodes. Electrochim Acta 291:249–255Google Scholar
  43. 43.
    Zhibin W, Yirong Z, Xiaobo J (2014) NiCo2O4 based materials for electrochemical supercapacitors. J Mater Chem A 2(36):14759–14772Google Scholar
  44. 44.
    He X, Liu Q, Liu J et al (2017) High-performance all-solid-state asymmetrical supercapacitors based on petal-like NiCo2S4/polyaniline nanosheets. Chem Eng J 325:134–143Google Scholar
  45. 45.
    Zhao Y, He X, Chen R, Liu Q, Liu J, Song D, Zhang H, Dong H, Li R, Zhang M, Wang J (2018) Hierarchical NiCo2S4@CoMoO4 core-shell heterostructures nanowire arrays as advanced electrodes for flexible all-solid-state asymmetric supercapacitors. Appl Surf Sci 453:73–82Google Scholar
  46. 46.
    Zhao Y, He X, Chen R, et al. (2018) A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures. Chem Eng J, 352: 29-38Google Scholar
  47. 47.
    Li Y, Hasin P, Wu Y (2010) Ni(x)Co(3-x)O(4) nanowire arrays for electrocatalytic oxygen evolution. Adv Mater 22(17):1926–1929Google Scholar
  48. 48.
    Chen R, Wang HY, Miao J, Yang H, Liu B (2015) A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4, core-shell nanowires. Nano Energy 11:333–340Google Scholar
  49. 49.
    Hsu CT, Hu CC (2013) Synthesis and characterization of mesoporous spinel NiCo2O4, using surfactant-assembled dispersion for asymmetric supercapacitors. J Power Sources 242(22):662–671Google Scholar
  50. 50.
    Zhang YF, Ma MZ, Yang J, Su HQ et al (2014) Selective synthesis of hierarchical mesoporous spinel NiCo2O4 for high-performance supercapacitors. Nanoscale 6:4303–4308Google Scholar
  51. 51.
    Zhu W, Lu Z, Zhang G, Lei X, Chang Z, Liu J, Sun X (2013) Hierarchical Ni0.25Co0.75(OH)2 nanoarrays for a high-performance supercapacitor electrode prepared by an in situ conversion process. J Mater Chem A 1(29):8327–8331Google Scholar
  52. 52.
    Meher SK, Justin P, Rao GR (2011) Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Interfaces 3(6):2063–2073Google Scholar
  53. 53.
    Liu J, Cao G, Yang Z et al (2010) Oriented nanostructures for energy conversion and storage. Chemsuschem 1(8–9):676–697Google Scholar
  54. 54.
    Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47:373–376Google Scholar
  55. 55.
    Chang KH, Hu CC, Chou CY et al (2007) Textural and capacitive characteristics of hydrothermally derived RuO2·xH2O nanocrystallites: independent control of crystal size and water content. Chem Mater 19:2112–2119Google Scholar
  56. 56.
    Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109(43):20207–20214Google Scholar
  57. 57.
    Xu MW, Zhao DD, Bao SJ, Li HL (2007) Mesoporous amorphous MnO2, as electrode material for supercapacitor. J Solid State Electrochem 11(8):1101–1107Google Scholar
  58. 58.
    Liang K, Tang X, Hu W (2012) High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode. J Mater Chem 22(22):11062–11067Google Scholar
  59. 59.
    Ghodbane O, Louro M, Coustan L et al (2014) Microstructural and morphological effects on charge storage properties in MnO2-carbon nanofibers based supercapacitors. J Electrochem Soc 160(11):2315–2321Google Scholar
  60. 60.
    Xu J, Li L, Gao P, Yu L, Chen Y, Yang P, Gai S, Yang P (2015) Facile preparation of NiCo2O4, nanobelt/graphene composite for electrochemical capacitor application. Electrochim Acta 166(7):206–214Google Scholar
  61. 61.
    Han E, Han Y, Zhu L, et al. (2018) Polyvinyl pyrrolidone assisted synthesis of flower-like nickel-cobalt layered double hydroxide on Ni foam for high-performance hybrid supercapacitor. Ionics 24(9): 2705–2715Google Scholar
  62. 62.
    He X, Li R, Liu J, Liu Q, chen RR, Song D, Wang J (2018) Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem Eng J 334:1573–1583Google Scholar
  63. 63.
    Gao L, Cao K, Zhang H, et al. (2017) Rationally designed nickel oxide ravines@iron cobalt-hydroxides with largely enhanced capacitive performance for asymmetric supercapacitor. J Mater Chem A 5(32): 16944–16952Google Scholar
  64. 64.
    Long C, Zheng M, Xiao Y, Lei B, Dong H, Zhang H, Hu H, Liu Y (2015) Amorphous Ni-Co binary oxide with hierarchical porous structure for electrochemical capacitors. ACS Appl Mater Interfaces 7(44):24419–24429Google Scholar
  65. 65.
    Li X, Jiang L, Zhou C, et al. Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors. Npg Asia Mater, 2015, 7(3):e165Google Scholar
  66. 66.
    Wang X, Liu WS, Lu X, Lee PS (2012) Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide-reduced graphite oxide composite material and its application for asymmetric supercapacitor device. J Mater Chem 22(43):23114–23119Google Scholar
  67. 67.
    Wang H, Holt CMB, Li Z, Tan X, Amirkhiz BS, Xu Z, Olsen BC, Stephenson T, Mitlin D (2012) Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5(9):605–617Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhenzhen Zeng
    • 1
  • Lingzhi Zhu
    • 1
    Email author
  • Enshan Han
    • 1
  • Xuechun Xiao
    • 1
  • Yiran Yao
    • 1
  • Lamei Sun
    • 1
  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations