Advertisement

Ionics

, Volume 25, Issue 3, pp 1407–1412 | Cite as

Preparation of gold catalyst by electrodeposition in [BMIm][TfO] ionic liquid electrolyte: an insightful study of theoretical calculations and experiments

  • Xuefeng RenEmail author
  • Qianyuan Lv
  • Bihe Liu
  • Lifen Liu
  • Maozhong AnEmail author
  • Anmin Liu
Short Communication
  • 62 Downloads

Abstract

Theoretical calculations and experimental studies were employed to study the electrodeposition process of gold catalyst preparation in ionic liquid 1-butyl-3-methylimidazolium trifluoromethansulfonate ([BMIm][TfO]) electrolyte. The frontier molecular orbital information of [BMIm][TfO] was studied by quantum chemical calculation. Molecular dynamic simulations were employed to investigate the interfacial interactions between [BMIm][TfO] and metal surfaces. Gold catalysts obtained from [BMIm][TfO] electrolyte were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) measurements to confirm the prediction of theoretical calculations and determine the influence of [BMIm][TfO] ionic liquid on gold electrodeposition. With effective adsorption on metal surfaces, [BMIm][TfO] is an appropriate choice as an electrolyte for preparation of a gold catalyst by electrodeposition in non-aqueous medium.

Keywords

Gold catalyst Electrodeposition Ionic liquid Quantum chemical calculation Molecular dynamic simulation 

Notes

Funding information

The authors acknowledge the support of the Fundamental Research Funds for the Central Universities (DUT18LK21 and DUT18LK15), the Natural Science Foundation of Liaoning Province (20180510020), and the Supercomputing Center of Dalian University of Technology.

Supplementary material

11581_2018_2806_MOESM1_ESM.doc (908 kb)
ESM 1 (DOC 908 kb)

References

  1. 1.
    Yao S, Zhang X, Zhou W, Gao R, Xu W, Ye Y, Lin L, Wen X, Liu P, Chen B, Crumlin E, Guo J, Zuo Z, Li W, Xie J, Lu L, Kiely CJ, Gu L, Shi C, Rodriguez JA, Ma D (2017) Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357:389–393CrossRefGoogle Scholar
  2. 2.
    Zugic B, Wang L, Heine C, Zakharov DN, Lechner BAJ, Stach EA, Biener J, Salmeron M, Madix RJ, Friend CM (2017) Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts. Nat Mater 16:558–564CrossRefGoogle Scholar
  3. 3.
    Zhan W, Wang J, Wang H, Zhang J, Liu X, Zhang P, Chi M, Guo Y, Guo Y, Lu G, Sun S, Dai S, Zhu H (2017) Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation. J Am Chem Soc 139:8846–8854CrossRefGoogle Scholar
  4. 4.
    Monaico EV, Tiginyanu IM, Ursaki VV, Nielsch K, Balan D, Prodana M, Enachescu M (2017) Gold electroplating as a tool for assessing the conductivity of InP nanostructures fabricated by anodic etching of crystalline substrates. J Electrochem Soc 164:D179–D183CrossRefGoogle Scholar
  5. 5.
    Luo J, Yin J, Zhang H, Yao M, Hu W (2016) Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder. Fusion Eng Des 113:51–56CrossRefGoogle Scholar
  6. 6.
    Green TA (2007) Gold electrodeposition for microelectronic, optoelectronic and microsystem applications. Gold Bull 40:105–114CrossRefGoogle Scholar
  7. 7.
    Christie IR, Cameron BP (1994) Gold electrodeposition within the electronics industry. Gold Bull 27:12–20CrossRefGoogle Scholar
  8. 8.
    Safavi A, Farjami F (2011) Electrodeposition of gold–platinum alloy nanoparticles on ionic liquid–chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosens Bioelectron 26:2547–2552CrossRefGoogle Scholar
  9. 9.
    Abbott AP, McKenzie KJ (2006) Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys 8:4265–4279CrossRefGoogle Scholar
  10. 10.
    Zhang Q, Shreeve JM (2014) Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem Rev 114:10527–10574CrossRefGoogle Scholar
  11. 11.
    Singh PK, Jadhav NA, Mishra SK, Singh UP, Bhattacharya B (2010) Application of ionic liquid doped solid polymer electrolyte. Ionics 16:645–648CrossRefGoogle Scholar
  12. 12.
    Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629CrossRefGoogle Scholar
  13. 13.
    Wang Q, Zhang Q, Lu X, Zhang S (2017) Electrodeposition of Al from chloroaluminate ionic liquids with different cations. Ionics 23:2449–2455CrossRefGoogle Scholar
  14. 14.
    Yang Y, Xu C, Hua Y, Wang M, Su Z (2017) Electrochemical preparation of Ni-La alloys from the EMIC-EG eutectic-based ionic liquid. Ionics 23:1703–1710CrossRefGoogle Scholar
  15. 15.
    Zheng Y, Zhang SJ, Lu XM, Wang Q, Zuo Y, Liu L (2012) Low-temperature electrodeposition of aluminium from Lewis acidic 1-allyl-3-methylimidazolium chloroalluminate ionic liquids. Chin J Chem Eng 20:130–139CrossRefGoogle Scholar
  16. 16.
    Lang H, Wang Q, Tu X, Chen S (2018) Template-free preparation of spherical Al particles in aluminum chloride and 1-butyl-3-methylimidazolium chloride ionic liquid. Ionics 24:1781–1788CrossRefGoogle Scholar
  17. 17.
    Zhang J, An M, Chen Q, Liu A, Jiang X, Ji S, Lian Y, Wen X (2016) Electrochemical study of the diffusion and nucleation of gallium (III) in [Bmim][TfO] ionic liquid. Electrochim Acta 190:1066–1077CrossRefGoogle Scholar
  18. 18.
    Zou XL, Gu SL, Lai GQ, Lu CY, Xie XL, Lu XG, Zhou ZF (2015) Facile electrodeposition of nano-iron films from Fe2O3 in a choline chloride-based ionic liquid. Mater Res Innov 19:S397–S402CrossRefGoogle Scholar
  19. 19.
    Yan B, Yang P, Zhao Y, Zhang J, An M (2012) Electrocodeposition of lithium and copper from room temperature ionic liquid 1-ethyl-3-methyllimidazolium bis (trifluoromethylsulfonyl) imide. RSC Adv 2:12926–12931CrossRefGoogle Scholar
  20. 20.
    Zhu YL, Katayama Y, Miura T (2015) Electrochemical co-deposition of Iron and nickel from a hydrophobic ionic liquid. J Electrochem Soc 162:D371–D375CrossRefGoogle Scholar
  21. 21.
    Zhou HR, Yu YD, Wei GY, Ge HL (2012) FePt thin films electrodeposited from non-aqueous liquids. Int J Electrochem Sc 7:5544–5556Google Scholar
  22. 22.
    Zhou HR, Wei GY, Lou JW, Cao Y, Meng XF, Ge HL, Dettinger H (2013) FePt magnetic multilayers electrodeposited from non-aqueous liquids. Surf Eng 29:434–439CrossRefGoogle Scholar
  23. 23.
    Zhao F, Franz S, Vicenzo A, Bestetti M, Venturini F, Cavallotti PL (2013) Electrodeposition of Fe-Ga thin films from eutectic-based ionic liquid. Electrochim Acta 114:878–888CrossRefGoogle Scholar
  24. 24.
    Shan-Shan J, Yan-Xia M, Jin-Qiu Z, Pei-Xia Y, Ye L, Mao-Zhong A (2014) Fabrication of CuInxGa1-xSe2 thin films via electrodeposition method with ionic liquid electrolytes. Chin J Inorg Chem 30:466–472Google Scholar
  25. 25.
    Ji S, Yang P, Zhang J, Lian Y, Zhang J, An M (2014) Electrodeposition of CuInxGa1−xSe2 from a 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. Mater Lett 133:14–16CrossRefGoogle Scholar
  26. 26.
    Monajemi H, Cheah MH, Lee VS, Zain SM, Tajuddin Wan Abdullah WA (2014) On the kinetics and reaction mechanisms of boronic acid in interaction with diols for non-enzymatic glucose monitoring applications: a hybrid DFT study. RSC Adv 4:10505–10513CrossRefGoogle Scholar
  27. 27.
    Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847CrossRefGoogle Scholar
  28. 28.
    Hu J, Chen W, Zhao X, Su H, Chen Z (2018) Anisotropic electronic characteristics, adsorption, and stability of low-index BiVO4 surfaces for photoelectrochemical applications. ACS Appl Mater Interfaces 10:5475–5484CrossRefGoogle Scholar
  29. 29.
    Kumar CBP, Mohana KN, Muralidhara HB (2015) Electrochemical and thermodynamic studies to evaluate the inhibition effect of synthesized piperidine derivatives on the corrosion of mild steel in acidic medium. Ionics 21:263–281CrossRefGoogle Scholar
  30. 30.
    Liu A, Ren X, Yang Q, Chen Y, Guo J, Li Y, Gao L, An M (2018) Preparation of AgCl photocatalyst by recovering silver from discarded cyanide-free silver electrodeposition bath: insightful investigation of quantum chemical calculations and experiment. Ionics.  https://doi.org/10.1007/s11581-018-2694-0
  31. 31.
    Vatamanu J, Borodin O, Bedrov D, Smith GD (2012) Molecular dynamics simulation study of the interfacial structure and differential capacitance of alkylimidazolium bis(trifluoromethanesulfonyl)imide [Cnmim][TFSI] ionic liquids at graphite electrodes. J Phys Chem C 116:7940–7951CrossRefGoogle Scholar
  32. 32.
    Wang C, An M, Yang P, Zhang J (2012) Prediction of a new leveler (N-butyl-methyl piperidinium bromide) for through-hole electroplating using molecular dynamics simulations. Electrochem Commun 18:104–107CrossRefGoogle Scholar
  33. 33.
    Zhu C, Yang HX, Wang YZ, Zhang DQ, Chen Y, Gao LX (2018) Synergistic effect between glutamic acid and rare earth cerium (III) as corrosion inhibitors on AA5052 aluminum alloy in neutral chloride medium. Ionics.  https://doi.org/10.1007/s11581-018-2605-4
  34. 34.
    Liu A, Ren X, Yang Q, Sokolowski J, Guo J, Li Y, Gao L, An M, Wu G (2018) Theoretical and experimental studies of the prevention mechanism of organic inhibitors on silver anti-tarnish. J Electrochem Soc 165:H725–H732CrossRefGoogle Scholar
  35. 35.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  36. 36.
    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413–7421CrossRefGoogle Scholar
  37. 37.
    Saha SK, Dutta A, Ghosh P, Sukul D, Banerjee P (2016) Novel Schiff-base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: experimental and theoretical approach. Phys Chem Chem Phys 18:17898–17911CrossRefGoogle Scholar
  38. 38.
    Ren X, Song Y, Liu A, Zhang J, Yang P, Zhang J, An M (2015) Experimental and theoretical studies of DMH as a complexing agent for a cyanide-free gold electroplating electrolyte. RSC Adv 5:64997–65004CrossRefGoogle Scholar
  39. 39.
    Turner NH, Single AM (1990) Determination of peak positions and areas from wide-scan XPS spectra. Surf Interface Anal 15:215–222CrossRefGoogle Scholar
  40. 40.
    Steiner UB, Caseri WR, Suter UW, Rehahn M, Schmitz L (1993) Ultrathin layers of low- and high-molecular-weight imides on gold and copper. Langmuir 9:3245–3254CrossRefGoogle Scholar
  41. 41.
    Konstadinidis K, Zhang P, Opila RL, Allara DL (1995) An in-situ X-ray photoelectron study of the interaction between vapor-deposited Ti atoms and functional groups at the surfaces of self-assembled monolayers. Surf Sci 338:300–312CrossRefGoogle Scholar
  42. 42.
    Lindquist JM, Hemminger JC (1988) High-resolution core level photoelectron spectra of solid TCNQ: determination of molecular orbital spatial distribution from localized shake-up features. J Phys Chem 92:1394–1396CrossRefGoogle Scholar
  43. 43.
    Jung DR, King DE, Czanderna AW (1993) Metal overlayers on organic functional groups of self-organized molecular assemblies. II. X-ray photoelectron spectroscopy of interactions of cu/CN on 12-mercaptododecanenitrile. J Vac Sci Technol A 11:2382–2386CrossRefGoogle Scholar
  44. 44.
    Riga J, Verbist JJ, Josseaux P, Kirsch-de Mesmaeker A (1985) Correlation between CdS photoanodic behaviour and electrode chemical modifications: an X-ray photoelectron spectroscopic study. Surf Interface Anal 7:163–168CrossRefGoogle Scholar
  45. 45.
    Su C-C, Faller JW (1974) Application of electron spectroscopy for chemical analysis to the study of ambidentate binding in sulfoxide complexes. Inorg Chem 13:1734–1736CrossRefGoogle Scholar
  46. 46.
    Steiner UB, Rehahn M, Caseri WR, Suter UW (1995) Self-assembled layers of an aromatic poly(ketone) and poly(benzil) on gold and copper. Langmuir 11:3013–3017CrossRefGoogle Scholar
  47. 47.
    Beamson G, Briggs D (1992) High resolution XPS of organic polymers : the Scienta ESCA300 database. WileyGoogle Scholar
  48. 48.
    Kassis CM, Steehler JK, Linton RW (1994) Characterization of 1,1,2,2-tetrahydroperfluorooctyl acrylate (PTAN) by XPS. Surf Sci Spectra 3:315–322CrossRefGoogle Scholar
  49. 49.
    Volmer M, Stratmann M, Viefhaus H (1990) Electrochemical and electron spectroscopic investigations of iron surfaces modified with thiols. Surf Interface Anal 16:278–282CrossRefGoogle Scholar
  50. 50.
    Berger F, Beche E, Berjoan R, Klein D, Chambaudet A (1996) An XPS and FTIR study of SO2 adsorption on SnO2 surfaces. Appl Surf Sci 93:9–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Food and EnvironmentDalian University of TechnologyPanjinChina
  2. 2.State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
  3. 3.State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical EngineeringDalian University of TechnologyPanjinChina

Personalised recommendations