, Volume 25, Issue 6, pp 2729–2734 | Cite as

Ionic conductive and dielectric properties of samarium isovalent doping in non-stoichiometric bismuth sodium titanate perovskite

  • Xiao Liu
  • Yunxia Zhao
  • Huicong Hu
  • Huiling Du
  • Jing ShiEmail author
Original Paper


Oxide ion-conducting solid electrolytes are of considerable importance as fuel cell component. Recently, Bi0.5Na0.5TiO3 (BNT)-based perovskite-structured oxides become a new hotspot of solid electrolyte since it has potential in oxygen ion conduction. Considerable ionic conductivity is achieved in a Bi deficient or an acceptor doping composition. In this work, the role of Sm content without lone pair electrons substituted for isovalent Bi is studied on the electrical properties of non-stoichiometric (Bi0.45Ca0.04)Na0.5TiO2.965 (BCNT). In the solid solution range, a transformation from resistive BCNT to dominated oxide ionic conductive process is revealed despite no additional designed vacancies involved. Interestingly, employment of smaller Sm cations by doping favors the plateau formation of dielectric permittivity at higher frequencies. Lone pairs substitution conception and shrinkage of lattice parameters are proposed to be responsible for the anomalous dielectric relaxation.


Lead free Bismuth sodium titanate Oxide ion conductors Dielectrics 


Funding information

This work was supported by the National Natural Science Foundation (51702249, 51602252, 51372197), the China Postdoctoral Science Foundation (2017M613065), the Shaanxi Province Science Foundation (2017JQ5072), and the Outstanding Youth Science Fund of Xi’an University of Science and Technology (2018YQ2-11).


  1. 1.
    Liu X, Tan X (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28:574–578CrossRefGoogle Scholar
  2. 2.
    Li T, Lou X, Ke X, Cheng S, Mi S, Wang X, Shi J, Liu X, Dong G, Fan H, Wang Y, Tan X (2017) Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3 -based lead-free piezoceramics. Acta Mater 128:337–344CrossRefGoogle Scholar
  3. 3.
    Liu X, Shi J, Zhu F, Du H, Li T, Liu X, Lu H (2018) Ultrahigh energy density and improved discharged efficiency in bismuth sodium titanate based relaxor ferroelectrics with A-site vacancy. J Materiomics 4:202–207Google Scholar
  4. 4.
    Hao J, Li W, Zhai J, Chen H (2019) Progress in high-strain perovskite piezoelectric ceramics. Mater Sci Eng R 135:1–57CrossRefGoogle Scholar
  5. 5.
    Keeble DS, Barney ER, Keen DA, Tucker MG, Kreisel J, Thomas PA (2013) Bifurcated polarization rotation in bismuth-based piezoelectrics. Adv Funct Mater 23:185–190CrossRefGoogle Scholar
  6. 6.
    Schütz D, Deluca M, Krauss W, Feteira A, Jackson T, Reichmann K (2012) Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv Funct Mater 22:2285–2294CrossRefGoogle Scholar
  7. 7.
    Li M, Pietrowski MJ, Souza RAD, Zhang H, Reaney IM, Cook SN et al (2014) A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater 13:31–35CrossRefGoogle Scholar
  8. 8.
    Yang F, Li M, Li L, Wu P, Pradal-Velázque E, Sinclair DC (2017) Optimisation of oxide-ion conductivity in acceptor-doped Na0.5Bi0.5TiO3 perovskite: approaching the limit? J Mater Chem A 5:21658–21662CrossRefGoogle Scholar
  9. 9.
    Lu Y, López CA, Wang J, Alonso JA, Sun C (2018) Insight into the structure and functional application of Mg-doped Na0.5Bi0.5TiO3 electrolyte for solid oxide fuel cells. J Alloys Compd 752:213–219CrossRefGoogle Scholar
  10. 10.
    Brett DJ, Atkinson A, Brandon NP, Skinner SJ (2008) Intermediate temperature solid oxide fuel cells. Chem Soc Rev 37:1568–1578CrossRefGoogle Scholar
  11. 11.
    Malavasi L, Fisher CA, Islam MS (2010) Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev 39:4370–4387CrossRefGoogle Scholar
  12. 12.
    Liu X, Xu X, Du H (2018) Electrical properties of La2Mo1.98Nb0.02O8.99 oxide ionic conductors prepared by tape casting. J Mater Sci Technol 34:2368–2370Google Scholar
  13. 13.
    Meyer K-C, Albe K (2017) Influence of phase transitions and defect associates on the oxygen migration in the ion conductor Na1/2Bi1/2TiO3. J Mater Chem A 5:4368–4375CrossRefGoogle Scholar
  14. 14.
    Koch L, Steiner S, Meyer K-C, Seo I-T, Albe K, Frömling T (2017) Ionic conductivity of acceptor doped sodium bismuth titanate: influence of dopants, phase transitions and defect associates. J Mater Chem C 5:8958–8965CrossRefGoogle Scholar
  15. 15.
    Liu X, Fan H, Shi J, Li Q (2015) Origin of anomalous giant dielectric performance in novel perovskite: Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M = Mg2+, Ga3+). Sci Rep 5:12699CrossRefGoogle Scholar
  16. 16.
    He X, Mo Y (2015) Accelerated materials design of Na0.5Bi0.5TiO3 oxygen ionic conductors based on first principles calculations. Phys Chem Chem Phys 17:18035–18044CrossRefGoogle Scholar
  17. 17.
    Yang F, Wu P, Sinclair DC (2017) Suppression of electrical conductivity and switching of conduction mechanisms in stoichiometric (Na0.5Bi0.5TiO3)1−x(BiAlO3)x (0 ≤ x ≤ 0.08) solid solutions. J Mater Chem C 5:7243–7252CrossRefGoogle Scholar
  18. 18.
    Liu X, Du H, Shi J, Hu H, Hao X (2018) Ionic conduction and anomalous diffusion in Sr and Ga acceptors co-doped bismuth sodium titanate solid solutions. ECS J Solid State Sci Technol 7:N96–N100CrossRefGoogle Scholar
  19. 19.
    Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligant Y (2000) Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404:856–858CrossRefGoogle Scholar
  20. 20.
    Lacorre P (2000) The LPS concept, a new way to look at anionic conductors. Solid State Sci 2:755–758CrossRefGoogle Scholar
  21. 21.
    Liu X, Fan H, Shi J, Dong G, Li Q (2014) High oxide ion conducting solid electrolytes of bismuth and niobium co-substituted La2Mo2O9. Int J Hydrog Energy 39:17819–17827CrossRefGoogle Scholar
  22. 22.
    Rao BN, Ranjan R (2012) Electric-field-driven monoclinic-to-rhombohedral transformation in Na1/2Bi1/2TiO3. Phys Rev B 86:134103CrossRefGoogle Scholar
  23. 23.
    Rao BN, Datta R, Chandrashekaran S, Mishra DK, Sathe V, Senyshyn A, Ranjan R (2013) Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3. Phys Rev B 88:224103CrossRefGoogle Scholar
  24. 24.
    Liu L, Knapp M, Ehrenberg H, Fang L, Fan H, Schmitt LA, Fuess H, Hoelzel M, Dammak H, Thi MP, Hinterstein M (2017) Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3 -Bi½Na½TiO3 system. J Eur Ceram Soc 37:1387–1399CrossRefGoogle Scholar
  25. 25.
    Liu L, Ma X, Knapp M, Ehrenberg H, Peng B, Fang L, Hinterstein M (2017) Thermal evolution of polar nanoregions identified by the relaxation time of electric modulus in the Bi1/2Na1/2TiO3 system. EPL 118:47001CrossRefGoogle Scholar
  26. 26.
    Mohn C, Stølen S, Norberg S, Hull S (2009) Oxide-Ion disorder within the high temperature δ Phase of Bi2O3. Phys Rev Lett 102:155502CrossRefGoogle Scholar
  27. 27.
    Mohn C, Stølen S (2011) Influence of the stereochemically active bismuth lone pair structure on ferroelectricity and photocalytic activity of Aurivillius phase Bi2WO6. Phys Rev B 83:014103CrossRefGoogle Scholar
  28. 28.
    Shi J, Fan H, Liu X, Ma Y, Li Q (2015) Bi deficiencies induced high permittivity in lead-free BNBT–BST high-temperature dielectrics. J Alloys Compd 627:463–467CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiao Liu
    • 1
  • Yunxia Zhao
    • 1
  • Huicong Hu
    • 1
  • Huiling Du
    • 1
  • Jing Shi
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringXi’an University of Science and TechnologyXi’anChina
  2. 2.Key Laboratory of Electronic Equipment Structure Design (Ministry of Education), School of Electro-Mechanical EngineeringXidian UniversityXi’anChina

Personalised recommendations