, Volume 25, Issue 3, pp 1167–1176 | Cite as

Cation influence of new imidazolium-based ionic liquids on hydrogen production from water electrolysis

  • Letícia ZanchetEmail author
  • Letícia Guerreiro da Trindade
  • Demétrius William Lima
  • William Bariviera
  • Fernanda Trombetta
  • Michèle Oberson de Souza
  • Emilse Maria Agostini MartiniEmail author
Original Paper


Aqueous solutions of three new imidazolium-based ionic liquids, imidazolium hydrogenosulfate, methylimidazolium hydrogenosulfate, and butylimidazolium hydrogenosulfate, have been tested as electrolytes in the hydrogen evolution reaction (HER) by water electrolysis. Tafel analyses have been conducted on each system and reveal that the mechanism of HER in Pt cathode is Volmer–Tafel, where the determining step is the hydrogen desorption at the catalytic surface. The electrolytic solutions have a lower pH value and higher ionic conductivity when the size of the substituent in the imidazole ring increases. Likewise, the activation energy of HER decreases and the exchange current increases with increasing size of the substituent in the imidazole ring of the ionic liquid used in the electrolytic solution. Therefore, the experimental results indicated that butylimidazolium hydrogenosulfate ionic liquid is the most effective, among those tested, as an aqueous electrolyte for HER. The determination of the potential of zero charge of the three electrolytes indicates that the specific adsorption is favored by the increase of the molar mass of the cation, however without the blocking the active sites of the Pt cathode. The adsorbed cations provide an alternative mechanism to the Tafel step with a lower activation energy for the HER, thus characterizing the catalytic process of this reaction.

Graphical abstract


Hydrogen production HER Ionic liquid ImH.HSO4 MImH.HSO4 BImH.HSO4 


  1. 1.
    Bidin N, Azni SR, Bakar AAM, Johari AR, Munap DHFA, Salebi FM, Razak SNS, Sulaiman SNA (2017) The effect of sunlight in hydrogen production from water electrolysis. Int J Hidrogen Energy 42:133–142. CrossRefGoogle Scholar
  2. 2.
    Suleman F, Dincer I, Agelin-Chaab M (2015) Environmental impact assessment and comparison of some hydrogen production options. Int J Hidrogen Energy 40:6976–6987. CrossRefGoogle Scholar
  3. 3.
    Uchidaa T, Sasaki Y, Ikeshoji T, Osawa M (2017) 4, 4′-Bipyridine as a molecular catalyst for electrochemical hydrogen production. Electrochim Acta 248:585–592. CrossRefGoogle Scholar
  4. 4.
    Orfila M, Linares M, Molina R, Botas JA, Marugan J, Sanz R (2017) Thermochemical hydrogen production using manganese cobalt spinels as redox. Int J Hidrogen Energy 42:13532–13543. CrossRefGoogle Scholar
  5. 5.
    Reverberi AP, Kleme JJ, Varbanov PS, Fabiano B (2016) A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods. J Clean Prod 136:72–80. CrossRefGoogle Scholar
  6. 6.
    Chang CJ, Wei YH, Huang KP (2017) Photocatalytic hydrogen production by flower-like graphene supported ZnS composite photocatalysts. Int J Hidrogen Energy 42:23578–23586. CrossRefGoogle Scholar
  7. 7.
    Saadetnejad D, Yıldırım R (2018) Photocatalytic hydrogen production by water splitting over au/Al-SrTiO3. Int J Hidrogen Energy 43:1116–1122. CrossRefGoogle Scholar
  8. 8.
    Chakik FE, Kaddami M, Mikou M (2017) Effect of operating parameters on hydrogen production by electrolysis of water. Int J Hidrogen Energy 42:25550–25557. CrossRefGoogle Scholar
  9. 9.
    Vincent I, Bessarabov D (2018) Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew Sust Energ Rev 81:1690–1704. CrossRefGoogle Scholar
  10. 10.
    Ganley JC (2009) High temperature and pressure alkaline electrolysis. Int J Hydrog Energy 34:3604–3611. CrossRefGoogle Scholar
  11. 11.
    Gouérec P, Poletto L, Denizot J, Sanchez-Cortezon E, Miners JH (2004) The evolution of the performance of alkaline fuel cells with circulating electrolyte. J Power Sources 129:193–204. CrossRefGoogle Scholar
  12. 12.
    Schulze M, Gülzow E (2004) Degradation of nickel anodes in alkaline fuel cells. J Power Sources 127:252–263. CrossRefGoogle Scholar
  13. 13.
    Gülzow E (1996) Alkaline fuel cells: a critical view. J Power Sources 61:99–104. CrossRefGoogle Scholar
  14. 14.
    Gülzow E, Schulze M (2004) Long-term operation of AFC electrodes with CO2 containing gases. J Power Sources 127:243–251. CrossRefGoogle Scholar
  15. 15.
    Wang J, Xu F, Jin H, Chen Y, Wang Y (2017) Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv Mater 29:1605838. CrossRefGoogle Scholar
  16. 16.
    Li T, Wang X, Yuan W, Li CM (2016) Unique co-catalytic behavior of Protic ionic liquids as multifunctional electrolytes for water splitting. ChemElectroChem 3:204–208. CrossRefGoogle Scholar
  17. 17.
    Armand N, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629. CrossRefGoogle Scholar
  18. 18.
    Zhu Y, Hosmane NS (2017) Ionic liquids: recent advances and applications in boron chemistry. Eur J Inorg Chem 38:4369–4377. CrossRefGoogle Scholar
  19. 19.
    Amaral L, Cardoso DSP, Šljukić B, Santos DMF, Sequeira CAC (2017) Room temperature ionic liquids as electrolyte additives for the HER in alkaline media. J Electrochem Soc 164:427–432 CrossRefGoogle Scholar
  20. 20.
    Amaral L, Cardoso DSP, Šljukić B, Santos DMF, Sequeira CAC (2018) Electrochemistry of hydrogen evolution in RTILs aqueous mixtures. Mater Res Bull in press.
  21. 21.
    Fiegenbaum F, Martini EMA, Souza MO, Becker MR, Souza RF (2013) Hydrogen production by water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid electrolytes. J Power Sources 243:822–825. CrossRefGoogle Scholar
  22. 22.
    Shirini F, Khaligh NG, Akbari-Dadamahaleh S (2012) Preparation, characterization and use of 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient, halogen-free and reusable ionic liquid catalyst for the trimethylsilyl protection of hydroxyl groups and protection of the obtained trimethylsilanes. J Mol Catal A Chem 365:15–23. CrossRefGoogle Scholar
  23. 23.
    Chaker Y, Ilikti H, Debdab M, Moumene T, Belarbi E, Wadouachi A, Abbas O, Khelifa B, Bresson S (2016) Synthesis and characterization of 1-(hydroxyethyl)-3-methylimidazolium sulfate and chloride ionic liquids. J Mol Struct 1113:182–190. CrossRefGoogle Scholar
  24. 24.
    Zeng Q, Zhang J, Cheng H, Chen L, Qi Z (2017) Corrosion properties of steel in 1-butyl-3-methylimidazolium hydrogen sulfate ionic liquid systems for desulfurization application. RSC Adv 7:48526–48536. CrossRefGoogle Scholar
  25. 25.
    Ramasamy R (2015) Vibrational spectroscopic studies of imidazole. Armen J Phys 8:51–55Google Scholar
  26. 26.
    Skoog AD, West DM, Holler FJ, Crouch SR (2006) Fundamentos de Química Analítica. Thomson, São PauloGoogle Scholar
  27. 27.
    Greaves TL, Drummond CJ (2015) Protic ionic liquids: evolving structure–property relationships and expanding applications. Chem Rev 115:11379–11448. CrossRefGoogle Scholar
  28. 28.
    Fiegenbaum F, Souza MO, Becker MR, Martini EMA, Souza RF (2015) Electrocatalytic activities of cathode electrodes for water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid as electrolyte. J Power Sources 280:12–17. CrossRefGoogle Scholar
  29. 29.
    Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H, Hu J (2006) Electrochemically controlled formation and growth of hydrogen nanobubbles. Langmuir 22:8109–8113. CrossRefGoogle Scholar
  30. 30.
    Lima DW, Fiegenbaum F, Trombetta F, Souza MO, Martini EMA (2018) Influence of graphitic materials microstructure in the hydrogen evolution in aqueous solution of tetra-alkylammonium-sulfonic acid ionic liquid. Int J Hydrog Energy 43:1239–1250. CrossRefGoogle Scholar
  31. 31.
    Lima DW, Fiegenbaum F, Trombetta F, Souza MO, Martini EMA (2017) PtNi and PtMo nanoparticles as efficient catalysts using TEA-PS.BF4 ionic liquid as electrolyte towards HER. Int J Hydrog Energy 42:5676–5683. CrossRefGoogle Scholar
  32. 32.
    Zhou W, Jia J, Lu J, Yang L, Hou D, Li G, Chen S (2016) Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28:29–43. CrossRefGoogle Scholar
  33. 33.
    Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:1–21. CrossRefGoogle Scholar
  34. 34.
    Azizi O, Jafarian M, Gobal F, Heli H, Mahjani MG (2007) The investigation of the kinetics and mechanism of hydrogen evolution reaction on tin. Int J Hydrog Energy 32:1755–1761. CrossRefGoogle Scholar
  35. 35.
    Vetter KJ (1967) Electrochemical kinetics—theoretical and experimental aspects. Academic Press, LondonGoogle Scholar
  36. 36.
    Bard AJ, Faulkner LR (1980) Electrochemical methods—fundamentals and applications. John Wiley, New YorkGoogle Scholar
  37. 37.
    Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1985) Instrumental methods in electrochemistry. Ellis Horwood, ChichesterGoogle Scholar
  38. 38.
    Ticianelli EA, Gonzalez ER (2013) Eletroquímica. Edusp, São PauloGoogle Scholar
  39. 39.
    Padilha JC, Martini EMA, Brum C, Souza MO, Souza RF (2009) Study of molybdenum electrodes for hydrogen evolution reaction. J Power Sources 194:482–485. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Letícia Zanchet
    • 1
    Email author
  • Letícia Guerreiro da Trindade
    • 1
  • Demétrius William Lima
    • 1
  • William Bariviera
    • 1
  • Fernanda Trombetta
    • 2
  • Michèle Oberson de Souza
    • 1
  • Emilse Maria Agostini Martini
    • 1
    Email author
  1. 1.Laboratório de Reatividade e CatáliseUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Laboratório de Síntese Orgânica Catalítica—LSO[Cat]Universidade Federal do Rio Grande—FURG Campus Santo Antônio da Patrulha, Escola de Química e AlimentosSanto Antônio da PatrulhaBrazil

Personalised recommendations