, Volume 25, Issue 6, pp 2645–2656 | Cite as

Montmorillonite incorporated polymethylmethacrylate matrix containing lithium trifluoromethanesulphonate (LTF) salt: thermally stable polymer nanocomposite electrolyte for lithium-ion batteries application

  • Emad M. MasoudEmail author
Original Paper


High and low content of montmorillonite incorporated polymethylmethacrylate matrix in the presence of lithiumtriflate salt was investigated and studied. All samples were synthesized using the solution cast technique method. Different techniques (X-ray diffraction, FT-IR, DSC, TG, and SEM) were used for structure characterization. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analyses confirmed the complete dissolution of lithiumtriflate salt and intercalation of montmorillonite within the polymethylmethacrylate matrix. The different contents of montmorillonite showed different behaviors in both of structure and properties. The sample containing the low content of 5 wt% montmorillonite showed the highest AC- conductivity value (σAc = 2.09 × 10−6 Ω−−1, at room temperature) with a big difference to the other ones. The same sample also showed a good thermal stability (Td = 378 °C). Electrochemical stability of the same sample was also studied. All results were collected and discussed.

Graphical abstract

Low MMT content incorporated PMMA matrix containing LTF salt: polymer nanocomposite electrolyte exhibiting good conductivity and thermally stable behavior.


Montmorillonite Electrical properties Polymer nanocomposites electrolytes Electrochemical stability Lithium ion batteries 



The author (Emad M. Masoud) of this research paper would like to thank the science and technology development fund (STDF), Egypt, ( for the financial support of this scientific research work through Short –Term Fellowship (STF) Project (Project ID: 23173).


  1. 1.
    Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964CrossRefGoogle Scholar
  2. 2.
    Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540CrossRefGoogle Scholar
  3. 3.
    Lago N, Garcia-Calvo O, Lopez del Amo JM, Rojo T, Armand M (2015) All-solid-state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes. ChemSusChem 8:3039–3043CrossRefGoogle Scholar
  4. 4.
    Xue Z, He D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3:19218–19253CrossRefGoogle Scholar
  5. 5.
    Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4:10038–10069CrossRefGoogle Scholar
  6. 6.
    Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Che L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials 5:139–164Google Scholar
  7. 7.
    Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22:1259–1279CrossRefGoogle Scholar
  8. 8.
    Wang W, Alexandridis P (2016) Composite polymer electrolytes: nanoparticles affect structure and properties. Polymers 8(11)(387):1–36Google Scholar
  9. 9.
    Choi SW, Kim JR, Ahn YR, Jo SM, Cairns EJ (2007) Characterization of electrospun PVdF fiber-based polymer electrolytes. Chem Mater 19:104–115CrossRefGoogle Scholar
  10. 10.
    Masoud EM (2016) Nano lithium aluminate filler incorporating gel lithium triflate polymer composite: preparation, characterization and application as an electrolyte in lithium ion batteries. Polym Test 56:65–73CrossRefGoogle Scholar
  11. 11.
    Senthil Kumar P, Sakunthala A, Reddy MV, Prabu M (2018) Structural, morphological, electrical and electrochemical study on plasticized PVdF-HFP/PEMA blended polymer electrolyte for lithium polymer battery application. Solid State Ionics 319:256–265CrossRefGoogle Scholar
  12. 12.
    Bohnke O, Frand G, Rezrazi M, Rousselot C, Truche C (1993) Fast ion transport in new lithium electrolytes gelled with PMMA. 1. Influence of polymer concentration. Solid State Ionics 66:97–104CrossRefGoogle Scholar
  13. 13.
    Raghavan P, Manuel J, Zhao X, Kim DS, Ahn JH, Nah C (2011) Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J Power Sources 196:6742–6749CrossRefGoogle Scholar
  14. 14.
    Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540CrossRefGoogle Scholar
  15. 15.
    Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50(44):443002–443065Google Scholar
  16. 16.
    Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci Mater Electron 29(20):17903–17920Google Scholar
  17. 17.
    Raghavan P, Zhao X, Shin C, Baek DH, Choi JW, Manuel J, Heo MY, Ahn JH, Nah C (2010) Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries. J Power Sources 195:6088–6094CrossRefGoogle Scholar
  18. 18.
    Sathish S, Shekar BC (2014) Preparation and characterization of nano scale PMMA thin films. Indian J Pure Appl Phys 52:64–67Google Scholar
  19. 19.
    Noor SAM, Bayley PM, Forsyth M, MacFarlane DR (2013) Ionogels based on ionic liquids as potential highly conductive solid state electrolytes. Electrochim Acta 91:219–226CrossRefGoogle Scholar
  20. 20.
    Carvalho TIS (2013) Development of ion jelly thin films for electrochemical devices. Faculdade de Ciência e Tecnologia da Universidade Nova de LisboaGoogle Scholar
  21. 21.
    Zai-Lai X, Jeličić A, Wang F-P, Rabu P, Friedrich A (2010) Transparent, flexible, and paramagnetic ionogels based on PMMA and the iron-based ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate(III) [Bmim][FeCl4]. J Mater Chem 20:9543–9549Google Scholar
  22. 22.
    Lunstroot K, Driesen K, Nockemann P, Viau L, Mutin PH, Vioux A, Binnemans K (2010) Ionic liquid as plasticizer for europium(iii)-doped luminescent poly(methyl methacrylate) films. Phys Chem Chem Phys 12:1879–1885CrossRefGoogle Scholar
  23. 23.
    Masoud EM, Elbellihi A-A, Bayoumy WA, Mousa MA (2013) Organic–inorganic composite polymer electrolyte based on PEO–LiClO4 and nano-Al2O3 filler for lithium polymer batteries: Dielectric and transport properties. Alloys Compd 575:223–228Google Scholar
  24. 24.
    Zhou J, Fedkiw PS (2004) Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides. Solid State Ionics 166:275–293CrossRefGoogle Scholar
  25. 25.
    Masoud EM, Hassan ME, Wahdaan SE, Elsayed SR, Elsayed SA (2016) Gel P (VdF/HFP)/PVAc/lithium hexafluorophosphate composite electrolyte containing nano ZnO filler for lithium ion batteries application: effect of nano filler concentration on structure, thermal stability and transport properties. Polym Test 56:277–286CrossRefGoogle Scholar
  26. 26.
    Moskwiak M, Giska I, Borkowska R, Zalewska A, Marczewski M, Marczewska H, Wieczorek W (2006) Physico- and electrochemistry of composite electrolytes based on PEODME–LiTFSI with TiO2. J Power Sources 159:443–448CrossRefGoogle Scholar
  27. 27.
    Sannier L, Zalewska A, Wieczorek W, Marczewski M, Marczewska H (2007) Impact of “Super Acid” like filler on the properties of a PEGDME/LiClO4 system. Electrochim Acta 52:5685–5689CrossRefGoogle Scholar
  28. 28.
    Stolarska M, Niedzicki L, Borkowska R, Zalewska A, Wieczorek W (2007) Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler. ElectrochimActa 53:1512–1517CrossRefGoogle Scholar
  29. 29.
    Vaia R, Vasudevan S, Krawiec W, Scanlon L, Giannelis E (1995) New polymer electrolyte nanocomposites: melt intercalation of poly(ethylene oxide) in mica-type silicates. Adv Mater 7:154–156CrossRefGoogle Scholar
  30. 30.
    Chen H, Chang FC (2001) The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer 42:9763–9769CrossRefGoogle Scholar
  31. 31.
    Chen H, Chiu C, Chang F (2002) Conductivity enhancement mechanism of the poly(ethylene oxide)/modified-clay/LiClO4 systems. J Polym Sci B Polym Phys 40:1342–1353CrossRefGoogle Scholar
  32. 32.
    Fan L, Nan C, Dang Z (2002) Effect of modified montmorillonites on the ionic conductivity of (PEO)16LiClO4 electrolytes. Electrochim Acta 47:3541–3544CrossRefGoogle Scholar
  33. 33.
    Chen H, Chang F (2001) Interaction mechanism of a novel polymer electrolyte composed of poly(acrylonitrile), lithium triflate, and mineral clay. J Polym Sci B Polym Phys 39:2407–2419CrossRefGoogle Scholar
  34. 34.
    Meneghetti P, Qutubuddin S, Webber A (2004) Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)–clay nanocomposite. Electrochim Acta 49:4923–4931CrossRefGoogle Scholar
  35. 35.
    Deka M, Kumar A (2010) Enhanced electrical and electrochemical properties of PMMA–clay nanocomposite gel polymer electrolytes. Electrochim Acta 55:1836–1842CrossRefGoogle Scholar
  36. 36.
    Aravindan V, Vickraman P (2007) Polyvinylidenefluoride–hexafluoropropylene based nanocomposite polymer electrolytes (NCPE) complexed with LiPF3(CF3CF2)3. Eur Polym J 43:5121–5127CrossRefGoogle Scholar
  37. 37.
    Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2008) Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234:24–32CrossRefGoogle Scholar
  38. 38.
    Manuel Stephen A, Nahm KS, Kulandainathan MA, Ravi G, Wilson J (2006) Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries. Eur Polym J 42:1728–1734CrossRefGoogle Scholar
  39. 39.
    Duan G, Zhang C, Li A, Yang X, Lu L, Wang X (2008) Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale Res Lett 3:118–122CrossRefGoogle Scholar
  40. 40.
    Masoud EM, El-Bellihi A-A, Bayoumy WA, Mohamed EA (2018) Polymer composite containing nano magnesium oxide filler and lithiumtriflate salt: An efficient polymer electrolyte for lithium ion batteries application. J Mol Liq 260C:237–244Google Scholar
  41. 41.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458CrossRefGoogle Scholar
  42. 42.
    Latif F, Aziz M, Katun N, Yahya MZ (2006) The role and impact of rubber in poly(methyl methacrylate)/lithium triflate electrolyte. J Power Sources 159:1401–1404CrossRefGoogle Scholar
  43. 43.
    Mohamad AA, Mohamed NS, Yahya MZ, Othman R, Ramesh S, Alias Y, Arof AK (2003) Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells. Solid State Ionics 177:156–171Google Scholar
  44. 44.
    Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem Electrochem 22:2725–2745Google Scholar
  45. 45.
    Chodari BVR, Wang W (eds) (2000) Solid state ionics: materials and devices. World Scientific, SingaporeGoogle Scholar
  46. 46.
    Hu L, Tang Z, Zhang Z (2007) New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4. J Power Sources 166:226–232CrossRefGoogle Scholar
  47. 47.
    Anderson S, Bohon RL, Kimpton DD (1955) Infrared spectra and atomic arrangement in fused boron oxide and soda borate glasses. J Am Ceram Soc 38:370–377CrossRefGoogle Scholar
  48. 48.
    Ren S, Chen Z, Yan T, Han F, Kuang X, Liang F, Liu L (2018) High temperature dielectrics and defect characteristic of (Nb, Mn, Zr) modified 0.4(Ba0.8Ca0.2)TiO3 – 0.6Bi(Mg0.5Ti0.5)O3 ceramics. J Phys Chem Solids 118:99–108Google Scholar
  49. 49.
    Han F, Ren S, Deng J, Yan T, Ma X, Peng B, Liu L (2017) Dielectric response mechanism and suppressing high-frequency dielectric loss in Y2O3 grafted CaCu3Ti4O12 ceramics. J Mater Sci Mater Electron 28:17378–17387Google Scholar
  50. 50.
    Deng J, Liu L, Sun X, Liu S, Yan T, Fang L, Elouadi B (2017) Dielectric relaxation behavior and mechanism of Y 2/3 Cu 3 Ti 4 O 12 ceramic. Mater Res Bull 88:320–329CrossRefGoogle Scholar
  51. 51.
    Han F, Deng J, Liu X, Yan T, Ren S, Ma X, Liu S, Peng B, Liu L (2017) High-temperature dielectric and relaxation behavior of Yb-doped Bi0.5Na0.5TiO3 ceramics. Ceram Int 43:5564–5573Google Scholar
  52. 52.
    Sun X, Deng J, Liu S, Yan T, Peng B, Jia W, Mei Z, Hongbo S, Fang L, Liu L (2016) Grain boundary defect compensation in Ti-doped BaFe0.5Nb0.5O3 ceramics. Appl Phys A 122(864):1–8Google Scholar
  53. 53.
    Liu S, Sun X, Peng B, Su H, Mei Z, Huang Y, Deng J, Su C, Fang L, Liu L (2016) Dielectric properties and defect mechanisms of (1-x)Ba(Fe0.5Nb0.5)O3 -xBiYbO3 ceramics. J Electroceram 37:137–144CrossRefGoogle Scholar
  54. 54.
    Masoud EM, El-Bellihi A-A, Bayoumy WA, Mousa MA (2013) Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO–LiClO4 composite. Mater Res Bull 48(3):1148–1154CrossRefGoogle Scholar
  55. 55.
    ElBellihi AA, Bayoumy WA, Masoud EM, Mousa MA (2012) Preparation, Characterizations and Conductivity of Composite Polymer Electrolytes Based on PEO-LiClO4 and Nano ZnO Filler. Bull Korean Soc 33(9):2949–2954Google Scholar
  56. 56.
    Masoud EM, Khairy M, Mousa MA (2013) Electrical properties of fast ion conducting silver based borate glasses: application in solid battery. Alloys Compd 569:150–155CrossRefGoogle Scholar
  57. 57.
    Masoud EM, Mousa MA (2015) Silver-doped silver vanadate glass composite electrolyte: structure and an investigation of electrical properties. Ionics 21:1095–1103Google Scholar
  58. 58.
    Masoud EM (2015) Citrated porous gel copolymer electrolyte composite for lithium ion batteries application: An investigation of ionic conduction in an optimized crystalline and porous structure. Alloys and compounds 651:157–163Google Scholar
  59. 59.
    Prasad Rao R, Reddy MV, Adams S, Chowdari BVR (2012) Preparation and mobile ion transport studies of Ta and Nb doped Li6Zr2O7 Li-fast ion conductors. Mater Sci Eng B 177:100–105Google Scholar
  60. 60.
    Reddy MV, Adams S (2017) Molten salt synthesis and characterization of fast ion conductor Li6.75La3Zr1.75Ta0.25O12. J Solid State Electrochem 21:2921–2928Google Scholar
  61. 61.
    Shastry MCR, Rao KJ (1991) ac conductivity and dielectric relaxation studies in AgI-based fast ion conducting glasses. Solid State Ionics 44:187–198CrossRefGoogle Scholar
  62. 62.
    Suthanthiraraj SA, Sheeba DJ, Paul BJ (2009) Impact of ethylene carbonate on ion transport characteristics of PVdF–AgCF3SO3 polymer electrolyte system. Mater Res Bull 44:1534–1539CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of scienceBenha UniversityBenhaEgypt

Personalised recommendations