Advertisement

Ionics

, Volume 25, Issue 6, pp 2835–2843 | Cite as

Synthesis of graphene/carbon nanofiber for electrochemical determination of levodopa in the presence of uric acid

  • Wan Qiu Wang
  • Hong Yan YueEmail author
  • Ze Min Yu
  • Shuo Huang
  • Shan Shan Song
  • Xin Gao
  • En Hao Guan
  • Hong Jie Zhang
  • Zhao Wang
Original Paper
  • 40 Downloads

Abstract

Carbon nanofiber (CNF) was prepared by electrospinning using polypropylene and nickel was coated on the CNF by electroless plating. Then, graphene (Gr) was synthesized on the surface of nickel by chemical vapor deposition. After etching nickel, the Gr/CNF was obtained eventually and then used as a working electrode for the determination of levodopa in the presence of uric acid by cyclic voltammetry and differential pulse voltammetry. The morphology and structure were investigated by scanning electron microscopy and Raman spectroscopy, respectively. The results indicate that the electrode exhibits a high sensitivity of 0.26 μA·μM−1 and a low measured limit of detection of 1 μM for levodopa in the range of 1–60 μM. The electrode shows excellent selectivity, reproducibility, and stability. It was also applied to determine levodopa in the spiked human urine samples.

Keywords

Carbon nanofiber Graphene Electroless plating Chemical vapor deposition Levodopa Uric acid 

Notes

Funding information

This work is supported by the Natural Science Foundation of Heilongjiang Province (LC2015020), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China (2015192), the Innovative Talent Fund of Harbin city (2016RAQXJ185), and Science Funds for the Young Innovative Talents of HUST (201604).

Supplementary material

11581_2018_2801_MOESM1_ESM.doc (282 kb)
ESM 1 (DOC 281 kb)

References

  1. 1.
    Jindal K, Tomar M, Gupta V (2014) Inducing electrocatalytic functionality in ZnO thin film by N doping to realize a third generation uric acid biosensor. Biosens Bioelectron 55(9):57–65.  https://doi.org/10.1016/j.bios.2013.11.015 CrossRefGoogle Scholar
  2. 2.
    Mazloum-Ardakani M, Taleat Z, Khoshroo A, Beitollahi H, Dehghani H (2012) Electrocatalytic oxidation and voltammetric determination of levodopa in the presence of carbidopa at the surface of a nanostructure based electrochemical sensor. Biosens Bioelectron 35(1):75–81.  https://doi.org/10.1016/j.bios.2012.02.014 CrossRefGoogle Scholar
  3. 3.
    Yue HY, Wang B, Huang S, Gao X, Lin XY, Yao LH, Guan EH, Zhang HJ, Song SS (2017) Determination of levodopa in the presence of uric acid using a ZnO nanoflower-modified indium tin oxide glass electrode. Ionics 23(12):3479–3486.  https://doi.org/10.1007/s11581-017-2153-3 CrossRefGoogle Scholar
  4. 4.
    Hu GZ, Zhang DP, Wu WL, Yang ZS (2008) Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode. Colloids Surf B 62(2):199–205.  https://doi.org/10.1016/j.colsurfb.2007.10.001 CrossRefGoogle Scholar
  5. 5.
    Yuan Q, Liu Y, Ye C, Sun H, Dai D, Wei Q, Lai G, Wu T, Yu A, Fu L, Chee K, Lin C (2018) Highly stable and regenerative graphene-diamond hybrid electrochemical biosensor for fouling target dopamine detection. Biosens Bioelectron 111(111):117–123.  https://doi.org/10.1016/j.bios.2018.04.006 CrossRefGoogle Scholar
  6. 6.
    Fu L, Wang A, Lai G, Su W, Malherbe F, Yu J, Lin C, Yu A (2018) Defects regulating of graphene ink for electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta 180(180):248–253.  https://doi.org/10.1016/j.talanta.2017.12.058 CrossRefGoogle Scholar
  7. 7.
    Long Q, Fang A, Wen Y, Li H, Zhang Y, Yao S (2016) Rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect. Biosens Bioelectron 86(86):109–114.  https://doi.org/10.1016/j.bios.2016.06.017 CrossRefGoogle Scholar
  8. 8.
    Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y (2014) Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 53(4):220–224.  https://doi.org/10.1016/j.bios.2013.09.064 CrossRefGoogle Scholar
  9. 9.
    Yang YJ, Li W (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioelectron 56(56):300–306.  https://doi.org/10.1016/j.bios.2014.01.037 CrossRefGoogle Scholar
  10. 10.
    Yue HY, Zhang H, Huang S, Lin XY, Gao X, Chang J, Yao LH, Guo EJ (2017) Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens Bioelectron 89(Pt 1):592–597.  https://doi.org/10.1016/j.bios.2016.01.078 CrossRefGoogle Scholar
  11. 11.
    Zhao D, Yu G, Tian K, Xu C (2016) A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens Bioelectron 82(82):119–126.  https://doi.org/10.1016/j.bios.2016.03.074 CrossRefGoogle Scholar
  12. 12.
    Arvand M, Ghodsi N (2013) A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of l-dopa in mouse brain extract and pharmaceuticals. J Solid State Electrochem 17(3):775–784.  https://doi.org/10.1007/s10008-012-1929-7 CrossRefGoogle Scholar
  13. 13.
    Luo YC, Do JS, Liu CC (2006) An amperometric uric acid biosensor based on modified Ir-C electrode. Biosens Bioelectron 22(4):482–488.  https://doi.org/10.1016/j.bios.2006.07.013 CrossRefGoogle Scholar
  14. 14.
    Arvand M, Ghodsi N (2014) Electrospun TiO2 nanofiber/graphite oxide modified electrode for electrochemical detection of L-DOPA in human cerebrospinal fluid. Sensors Actuators B 204(204):393–401.  https://doi.org/10.1016/j.snb.2014.07.110 CrossRefGoogle Scholar
  15. 15.
    Rezaei B, Shams-Ghahfarokhi L, Havakeshian E, Ensafi AA (2016) An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid. Talanta 158(158):42–50.  https://doi.org/10.1016/j.talanta.2016.04.061 CrossRefGoogle Scholar
  16. 16.
    Jong KD, Geus J (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42(4):481–510.  https://doi.org/10.1081/CR-100101954 CrossRefGoogle Scholar
  17. 17.
    Yang S, Taha-Tijerina J, Serrato-Diaz V, Hernandez K, Lozano K (2007) Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene. Compos Part B 38(2):228–235.  https://doi.org/10.1016/j.compositesb.2006.04.003 CrossRefGoogle Scholar
  18. 18.
    Tolosa A, Krüner B, Jäckel N, Aslan M, Vakifahmetoglu C, Presser V (2016) Electrospinning and electrospraying of silicon oxycarbide-derived nanoporous carbon for supercapacitor electrodes. J Power Sources 313(313):178–188.  https://doi.org/10.1016/j.jpowsour.2016.02.077 CrossRefGoogle Scholar
  19. 19.
    Kim C, Cho YJ, Yun WY, Ngoc BTN, Yang KS, Chang DR, Lee JW, Kojima M, Kim YA, Endo M (2007) Fabrications and structural characterization of ultra-fine carbon fibres by electrospinning of polymer blends. Solid State Commun 142(1–2):20–23.  https://doi.org/10.1016/j.ssc.2007.01.030 CrossRefGoogle Scholar
  20. 20.
    Liu C, Liu J, Wang J, Li J, Luo R, Shen J, Sun X, Han W, Wang L (2018) Electrospun mulberry-like hierarchical carbon fiber web for high-performance supercapacitors. J Colloid Interface Sci 512(512):713–721.  https://doi.org/10.1016/j.jcis.2017.10.093 CrossRefGoogle Scholar
  21. 21.
    Chinnappan A, Lee JKY, Jayathilaka WADM, Ramakrishna S (2018) Fabrication of MWCNT/Cu nanofibers via electrospinning method and analysis of their electrical conductivity by four-probe method. Int J Hydrog Energy 43(2):721–729.  https://doi.org/10.1016/j.ijhydene.2017.11.028 CrossRefGoogle Scholar
  22. 22.
    Ning H, Xie H, Zhao Q, Liu J, Tian W, Wang Y, Wu M (2017) Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries. J Alloys Compd 722(722):716–720.  https://doi.org/10.1016/j.jallcom.2017.06.099 CrossRefGoogle Scholar
  23. 23.
    Xu J, Zhang L, Xu G, Sun Z, Zhang C, Ma X, Qi C, Zhang L, Jia D (2018) Facile synthesis of NiS anchored carbon nanofibers for high-performance supercapacitors. Appl Surf Sci 434(434):112–119.  https://doi.org/10.1016/j.apsusc.2017.09.233 CrossRefGoogle Scholar
  24. 24.
    Wei Y, Zhang L, Gong C, Liu S, Zhang M, Shi Y, Zhang J (2018) Fabrication of TiN/carbon nanofibers by electrospinning and their electromagnetic wave absorption properties. J Alloys Compd 735(735):1488–1493.  https://doi.org/10.1016/j.jallcom.2017.11.295 CrossRefGoogle Scholar
  25. 25.
    Cinti S, Arduini F (2017) Graphene-based screen-printed electrochemical (bio)sensors and their applications: efforts and criticisms. Biosens Bioelectron 89(Pt 1):107–122.  https://doi.org/10.1016/j.bios.2016.07.005 CrossRefGoogle Scholar
  26. 26.
    Wang MH, Ji BW, Gu XW, Tian HC, Kang XY, Yang B, Wang XL, Chen X, Li CY, Liu JQ (2018) Direct electrodeposition of graphene enhanced conductive polymer on microelectrode for biosensing application. Biosens Bioelectron 99(99):99–107.  https://doi.org/10.1016/j.bios.2017.07.030 CrossRefGoogle Scholar
  27. 27.
    Fu L, Lai G, Jia B, Yu A (2014) Preparation and electrocatalytic properties of polydopamine functionalized reduced graphene oxide-silver nanocomposites. Electrocatalysis 6(1):72–76.  https://doi.org/10.1007/s12678-014-0219-9 CrossRefGoogle Scholar
  28. 28.
    Tian F, Lyu J, Shi J, Yang M (2017) Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. Biosens Bioelectron 89(Pt 1):123–135.  https://doi.org/10.1016/j.bios.2016.06.046 CrossRefGoogle Scholar
  29. 29.
    Afsahi S, Lerner MB, Goldstein JM, Lee J, Tang X, Bagarozzi DA, Pan D, Locascio L, Walker A, Barron F, Goldsmith BR (2018) Novel graphene-based biosensor for early detection of Zika virus infection. Biosens Bioelectron 100(100):85–88.  https://doi.org/10.1016/j.bios.2017.08.051 CrossRefGoogle Scholar
  30. 30.
    Zhang H, Zhang H, Aldalbahi A, Zuo X, Fan C, Mi X (2017) Fluorescent biosensors enabled by graphene and graphene oxide. Biosens Bioelectron 89(Pt 1):96–106.  https://doi.org/10.1016/j.bios.2016.07.030 CrossRefGoogle Scholar
  31. 31.
    Shi L, Chen K, Du R, Bachmatiuk A, Rümmeli MH, Xie K, Huang Y, Zhang Y, Liu Z (2016) Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil–water separation. J Am Chem Soc 138(20):6360–6363.  https://doi.org/10.1021/jacs.6b02262 CrossRefGoogle Scholar
  32. 32.
    Li Q, Newberg JT, Walter EC, And JCH, Penner RM (2004) Polycrystalline molybdenum disulfide (2H−MoS2) nano- and microribbons by electrochemical/chemical synthesis. Nano Lett 4(2):277–281.  https://doi.org/10.1021/nl035011f CrossRefGoogle Scholar
  33. 33.
    Dryhurst G (1972) Electrochemical oxidation of uric acid and xanthine at the pyrolytic graphite electrode. J Electrochem Soc 119(12):1659–1664.  https://doi.org/10.1149/1.2404066 CrossRefGoogle Scholar
  34. 34.
    Yoon SM, Choi WM, Baik H, Shin HJ, Song I, Kwon MS, Bae JJ, Kim H, Lee YH, Choi JY (2012) Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. ACS Nano 6(8):6803–6811.  https://doi.org/10.1021/nn301546z CrossRefGoogle Scholar
  35. 35.
    Hadi M, Rouhollahi A (2012) Simultaneous electrochemical sensing of ascorbic acid, dopamine and uric acid at anodized nanocrystalline graphite-like pyrolytic carbon film electrode. Anal Chim Acta 721(7):55–60.  https://doi.org/10.1016/j.aca.2012.01.051 CrossRefGoogle Scholar
  36. 36.
    Eksin E, Zor E, Erdem A, Bingol H (2017) Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode. Biosensors & Bioelectronics 92:207–14.  https://doi.org/10.1016/j.bios.2017.02.016

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wan Qiu Wang
    • 1
  • Hong Yan Yue
    • 1
    Email author
  • Ze Min Yu
    • 1
  • Shuo Huang
    • 1
    • 2
  • Shan Shan Song
    • 1
  • Xin Gao
    • 1
  • En Hao Guan
    • 1
  • Hong Jie Zhang
    • 1
  • Zhao Wang
    • 1
  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations