Advertisement

Ionics

, Volume 25, Issue 2, pp 897–901 | Cite as

Core–shell structured CoNi2S4@polydopamine nanocomposites as advanced electrode materials for supercapacitors

  • Xiaobo Ding
  • Junsheng ZhuEmail author
  • Guangzhou Hu
  • Shuangquan Zhang
Short Communication
  • 53 Downloads

Abstract

Novel core–shell structured CoNi2S4@polydopamine nanocomposites have been successfully developed as advanced electrode materials for supercapacitors. The CoNi2S4 nanoparticles are tightly wrapped by polydopamine, forming a hierarchical core/shell network, which benefits the improvement of the electrochemical properties. The electrochemical performance of the as-prepared materials had been investigated by cyclic voltammetry and galvanostatic charge/discharge tests. Specific capacitances of CoNi2S4 and CoNi2S4@polydopamine are 425 and 725 F g−1 at 10 A g−1 respectively. Electrochemical impedance spectroscopy results suggest that the coating of polydopamine can reduce the charge transfer resistance and increase the diffusion rate of the electrolytic ion efficiently. The superior pseudocapacitive performance of CoNi2S4@polydopamine can be ascribed to the unique core–shell heterostructure and the combined contribution of the electrochemical active CoNi2S4 and the conductive polydopamine.

Keywords

Supercapacitors Nanocomposites Core–shell heterostructure CoNi2S4 Polydopamine 

Notes

Funding information

This work was supported by the Natural Science Foundation of Jiangsu Province, China (No. BK20160242).

Supplementary material

11581_2018_2798_MOESM1_ESM.doc (592 kb)
ESM 1 (DOC 592 kb)

References

  1. 1.
    Yi TF, Zhu YR, Tao W, Luo SH, Xie Y, Li XF (2018) Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J Power Sources 399:26–41CrossRefGoogle Scholar
  2. 2.
    Wang L, Tian H, Wang D, Qin X, Shao G (2015) Preparation and electrochemical characteristic of porous NiO supported by sulfonated graphene for supercapacitors. Electrochimi Acta 151:407–414CrossRefGoogle Scholar
  3. 3.
    Venkataramana K, Madhuri C, Shanker J, Madhusudan C, Reddy C (2018) Microwave-sintered Pr3+, Sm3+, and Gd3+ triple-doped ceria electrolyte material for IT-SOFC applications. Ionics 24:3075–3084CrossRefGoogle Scholar
  4. 4.
    Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7:2160–2181CrossRefGoogle Scholar
  5. 5.
    Hou L, Yuan C, Li D, Yang L, Shen L, Zhang F, Zhang X (2011) Electrochemically induced transformation of NiS nanoparticles into Ni(OH)2 in KOH aqueous solution toward electrochemical capacitors. Electrochim Acta 56:7454–7459CrossRefGoogle Scholar
  6. 6.
    Chen FS, Wang H, Ji S, Linkov V, Wang RF (2018) Core-shell structured Ni 3 S 2 @Co(OH) 2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chem Eng J 345:48–57CrossRefGoogle Scholar
  7. 7.
    Ren Q, Wang RF, Wang H, Key J, Brett D, Ji S, Yin SB, Shen PK (2016) Ranunculus flower-like Ni(OH)2@Mn2O3as a high specific capacitance cathode material for alkaline supercapacitors. J Mater Chem A 4:7591–7595CrossRefGoogle Scholar
  8. 8.
    Wang H, Yan JJ, Wang RF, Li SX, Brett D, Key J, Ji S (2017) Toward high practical capacitance of Ni(OH)2using highly conductive CoB nanochain supports. J Mater Chem A 5:92–96CrossRefGoogle Scholar
  9. 9.
    Chen FS, Ji S, Liu QB, Wang H, Liu H, Brett D, Wang GX, Wang RF (2018) Rational design of hierarchically core-shell structured Ni3S2@NiMoO4Nanowires for electrochemical energy storage. Small 14:1800791CrossRefGoogle Scholar
  10. 10.
    Moosavifard S, Shamsi J, Altafia M, Moosavifard Z (2016) All-solid state, flexible, high-energy integrated hybrid micro-supercapacitors based on 3D LSG/CoNi2S4nanosheets. Chem Commun 52:13140–13143CrossRefGoogle Scholar
  11. 11.
    Liang J, Meng L, Chai Y, Luo M, Li L (2017) TEOA-mediated formation of hollow core-shell structured CoNi 2 S 4 nanospheres as a high-performance electrode material for supercapacitors. J Power Sources 362:123–130CrossRefGoogle Scholar
  12. 12.
    Li Z, Zhao D, Xu C, Ning J, Zhong Y, Zhang Z, Wang Y, Hu Y (2018) Reduced CoNi 2 S 4 nanosheets with enhanced conductivity for high-performance supercapacitors. Electrochim Acta 278:33–41CrossRefGoogle Scholar
  13. 13.
    Rajesh J, Park J, Quy V, Kwon J, Chae J, Kang S, Kim H, Ahn K (2018) Rambutan-like cobalt nickel sulfide (CoNi 2 S 4 ) hierarchitecture for high-performance symmetric aqueous supercapacitors. J Ind Eng Chem 63:73–83CrossRefGoogle Scholar
  14. 14.
    Beka L, Li X, Xia XJ, Liu WH (2017) 3D flower-like CoNi 2 S 4 grown on graphene decorated nickel foam as high performance supercapacitor. Diam Relat Mater 73:169–176CrossRefGoogle Scholar
  15. 15.
    Gao Z, Chen C, Chang J, Chen L, Wang P, Wu D, Xu F, Guo Y, Jiang K (2018) Enhanced cycleability of faradic CoNi 2 S 4 electrode by reduced graphene oxide coating for efficient asymmetric supercapacitor. Electrochim Acta 281:394–404CrossRefGoogle Scholar
  16. 16.
    Liu B, Mo R, Kong D, Wang Y, Yang HY (2017) 3D nitrogen-doped graphene decorated CoNi 2 S 4 @polypyrrole electrode for pseudocapacitor with ultrahigh electrochemical performance. FlatChem 6:1–10CrossRefGoogle Scholar
  17. 17.
    Li Y, Chen J, Ji Y, Yang W, Fu X, Sun R, Wong C (2018) Hierarchical graphite foil/CoNi 2 S 4 flexible electrode with superior thermal conductivity for high-performance supercapacitors. J Energy Chem 27:463–471CrossRefGoogle Scholar
  18. 18.
    Ai Z, Hu Z, Liu Y, Fan M, Liu P (2016) Novel 3D flower-like CoNi2S4/carbon nanotube composites as high-performance electrode materials for supercapacitors. New J Chem 40:340–347CrossRefGoogle Scholar
  19. 19.
    Patil SJ, Kim JH, Lee DW (2017) Self-assembled Ni 3 S 2 //CoNi 2 S 4 nanoarrays for ultra high-performance supercapacitor. Chem Eng J 322:498–509CrossRefGoogle Scholar
  20. 20.
    Chen F, Wang H, Ji S, Linkov V, Wang R (2018) A 3D petal–like Ni S /CoNi S hybrid grown on Ni foam as a binder–free electrode for energy storage. Sustainable Energy Fuels 2:1791–1798CrossRefGoogle Scholar
  21. 21.
    Xiao YL, Zai JT, Li XM, Gong Y, Li B, Han QY, Qian XF (2014) Polydopamine functionalized graphene/NiFe2O4 nanocomposite with improving Li storage performances. Nano Energy 6:51–58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaobo Ding
    • 1
  • Junsheng Zhu
    • 1
    Email author
  • Guangzhou Hu
    • 1
  • Shuangquan Zhang
    • 1
  1. 1.School of Chemical Engineering and Technology, Key Laboratory of Coal Processing and Efficient Utilization of Ministry of EducationChina University of Mining and TechnologyXuzhouChina

Personalised recommendations