Advertisement

Ionics

, Volume 25, Issue 2, pp 719–726 | Cite as

Experimental investigation of a passive direct ethanol fuel cell

  • Naveen K. Shrivastava
  • Rajkumar B. ChadgeEmail author
  • Pritam Ahire
  • Jayant P. Giri
Original Paper
  • 28 Downloads

Abstract

Experimental investigation of a passive direct ethanol fuel cell (DEFC) is presented in this work. A passive DEFC of active area 25 cm2 with Nafion 115 membrane is developed and tested. Effect of several parameters such as ethanol feed concentration, ambient temperature, bolt torque, and operating orientation on the cell performance is investigated. It is found that all these parameters significantly affect the cell performance. The cell performance improves with initial increase in the ethanol feed concentration, reaches to a maximum, and then decreases on further increasing the ethanol feed concentration. A similar trend in the cell performance is observed on increasing the ambient temperature and on increasing the bolt torque too. In this study, the maximum cell performance is observed with 4 M ethanol feed concentration, 60 °C of ambient temperature, and 7 Nm of bolt torque. Cell orientation too affects the cell performance. Horizontal cell orientation is proved to deliver better cell performance compared to vertical orientation. This study depicts that an improved DEFC performance can be obtained by carefully selecting working parameters.

Keywords

Passive direct ethanol fuel cell Ethanol concentration Temperature Torque Orientation 

References

  1. 1.
    Mekhilef S, Saidur R, Safari A (2012) Comparative study of different fuel cell technologies. Renew Sust Energ Rev 16:981–989CrossRefGoogle Scholar
  2. 2.
    Lucia U (2014) Overview on fuel cells. Renew Sust Energ Rev 30:164–169CrossRefGoogle Scholar
  3. 3.
    Jayakumar A, Sethu S, Ramos M, Robertson J, Al-Jumaily A (2015) A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics 21:1–18CrossRefGoogle Scholar
  4. 4.
    Pollet BG, Staffell I, Shang JL (2012) Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects. Electrochim Acta 84:235–249CrossRefGoogle Scholar
  5. 5.
    Hu Z, Xu L, Li J, Ouyang M, Song Z, Huang H (2018) A reconstructed fuel cell life-prediction model for a fuel cell hybrid city bus. Energy Convers Manag 156:723–732CrossRefGoogle Scholar
  6. 6.
    Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sust Energ Rev 32:810–853CrossRefGoogle Scholar
  7. 7.
    Acres GJK (2001) Recent advances in fuel cell technology and its applications. J Power Sources 100:60–66CrossRefGoogle Scholar
  8. 8.
    Qian W, Wilkinson DP, Shen J, Wang H, Zhang J (2006) Architecture for portable direct liquid fuel cells. J Power Sources 154:202–213CrossRefGoogle Scholar
  9. 9.
    Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283–296CrossRefGoogle Scholar
  10. 10.
    Kamarudin SK, Achmad F, Daud WRW (2009) Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrog Energy 34:6902–6916CrossRefGoogle Scholar
  11. 11.
    Cao J, Wang L, Song L, Xu J, Wang H, Chen Z, Huang Q, Yang H (2014) Novel cathodal diffusion layer with mesoporous carbon for the passive direct methanol fuel cell. Electrochim Acta 118:163–168CrossRefGoogle Scholar
  12. 12.
    Yousefi S, Zohoor M (2013) Investigating the effect of operating parameters on the open circuit voltage of a passive DMFC. Ionics 19:1195–1201CrossRefGoogle Scholar
  13. 13.
    Hashemi R, Yousefi S, Faraji M (2015) Experimental studying of the effect of active area on the performance of passive direct methanol fuel cell. Ionics 21:2851–2862CrossRefGoogle Scholar
  14. 14.
    Chen R, Zhao TS (2007) Porous current collectors for passive direct methanol fuel cells. Electrochim Acta 52:4317–4324CrossRefGoogle Scholar
  15. 15.
    Yousefi S, Ganji DD (2012) Experimental investigation of a passive direct methanol fuel cell with 100 cm2 active areas. Electrochim Acta 85:693–699CrossRefGoogle Scholar
  16. 16.
    Munjewar S, Thombre S, Mallick R (2017) A comprehensive review on recent material development of passive direct methanol fuel cell. Ionics 23:1–18CrossRefGoogle Scholar
  17. 17.
    Shrivastava N, Thombre S, Chadge R (2016) Liquid feed passive direct methanol fuel cell: challenges and recent advances. Ionics 22:1–23CrossRefGoogle Scholar
  18. 18.
    Faghri A, Li X, Bahrami H (2012) Recent advances in passive and semi passive direct methanol fuel cells. Int J Therm Sci 62:12–18CrossRefGoogle Scholar
  19. 19.
    Zhao TS, Chen R, Yang WW, Xu C (2009) Small direct methanol fuel cells with passive supply of reactants. J Power Sources 191:185–202CrossRefGoogle Scholar
  20. 20.
    Zhao TS, Yang WW, Chen R, Wu QX (2010) Towards operating direct methanol fuel cells with highly concentrated fuel. J Power Sources 195:3451–3462CrossRefGoogle Scholar
  21. 21.
    Akhairi M, Kamarudin S (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrog Energy 41:4214–4228CrossRefGoogle Scholar
  22. 22.
    An L, Zhao T, Li Y (2015) Carbon-neutral sustainable energy technology: direct ethanol fuel cells. Renew Sust Energ Rev 50:1462–1468CrossRefGoogle Scholar
  23. 23.
    Abdullah S, Kamarudin S, Hasran U, Masdar M, Daud W (2015) Development of a conceptual design model of a direct ethanol fuel cell (DEFC). Int J Hydrog Energy 40:11943–11948CrossRefGoogle Scholar
  24. 24.
    Song S, Zhou W, Tian J, Cai R, Sun G, Xin Q, Kontou S, Tsiakaras P (2005) Ethanol crossover phenomena and its influence on the performance of DEFC. J Power Sources 145:266–271CrossRefGoogle Scholar
  25. 25.
    Badwal S, Giddey S, Kulkarni A, Goel J, Basu S (2015) Direct ethanol fuel cells for transport and stationary applications – a comprehensive review. Appl Energy 145:80–103CrossRefGoogle Scholar
  26. 26.
    Kamarudin M, Kamarudin S, Masdar M, Daud W (2013) Review: direct ethanol fuel cells. Int J Hydrog Energy 38:9438–9453CrossRefGoogle Scholar
  27. 27.
    Song S, Wang G, Zhou W, Zhao X, Sun G, Xin Q, Kontou S, Tsiakaras P (2005) The effect of the MEA preparation procedure on both ethanol crossover and DEFC performance. J Power Sources 140:103–110CrossRefGoogle Scholar
  28. 28.
    Ma K, Han S, Kwon S, Kwak D, Park K (2018) In press) High-performance direct ethanol fuel cell using nitrate reduction reaction. Int J Hydrog Energy 43:17265–17270CrossRefGoogle Scholar
  29. 29.
    Heysiattalab S, Shakeri M, Safari M, Keikha M (2011) Investigation of key parameters influence on performance of direct ethanol fuel cell (DEFC). J Ind Eng Chem 17:727–729CrossRefGoogle Scholar
  30. 30.
    Alzate V, Fatih K, Wang H (2011) Effect of operating parameters and anode diffusion layer on the direct ethanol fuel cell performance. J Power Sources 196:10625–10631CrossRefGoogle Scholar
  31. 31.
    Pereira J, Falcão D, Oliveira V, Pinto A (2014) Performance of a passive direct ethanol fuel cell. J Power Sources 256:14–19CrossRefGoogle Scholar
  32. 32.
    Oliveira V, Pereira J, Pinto A (2017) Modeling of passive direct ethanol fuel cells. Energy 133:652–665CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Naveen K. Shrivastava
    • 1
  • Rajkumar B. Chadge
    • 2
    Email author
  • Pritam Ahire
    • 2
  • Jayant P. Giri
    • 2
  1. 1.Department of Mechanical EngineeringBirla Institute of Technology and ScienceDubaiUAE
  2. 2.Department of Mechanical EngineeringYeshwantrao Chavan College of EngineeringNagpurIndia

Personalised recommendations