, Volume 25, Issue 6, pp 2735–2743 | Cite as

Changes in structure and electrical conductivity of some rare-earth-doped ceria induced by strontium addition

  • Nicoleta CioateraEmail author
  • Elena-Adriana Voinea
  • A. Dobritescu
  • Andreea Simionescu
  • C. I. Resceanu
  • C.-I. Spinu
Original Paper


In order to investigate the effect of strontium addition on the structure and ionic conductivity of rare-earth-doped ceria, powders with composition Ce0.85Dy0.15-xSrxO2-δ (x = 0, 0.05, 0.075) and Ce0.85Yb0.15-xSrxO2-δ (x = 0, 0.05, 0.075) are synthesized using a Pechini method. X-ray diffraction (XRD) and Raman spectroscopy analysis evidence the formation of single-phase solid solutions for all investigated powders and their corresponding sinters. An increase in grain size with strontium content is evidenced by scanning electron microscopy (SEM). Electrochemical impedance spectroscopy allows only the determination of total ionic conductivity of the investigated samples. The sample with stoichiometry Ce0.85Yb0.10Sr0.05O2-δ exhibits the highest ionic conductivity (8.6 × 10−4 S/cm at 500 °C) and the lowest activation energy of conduction (0.71 eV) among all investigated samples. The activation energy of conduction has a dominating effect on ionic conductivity for Ce–Yb system.


Ceria Doping Sol-gel Impedance spectroscopy Ionic conductivity 


Funding information

UEFISCDI financial support in the framework of research project PN-II-PT-PCCA-2011-3.1-1423 (no 26/2012) is greatfully acknowledged. POSCCE project no 256/2010 « Research Infrastructure in Applied Sciences - INCESA » is acknowledged for fundings of the analytical equipments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zajac W, Molenda J (2008) Electrical conductivity of doubly doped ceria. Solid State Ionics 179:154–158CrossRefGoogle Scholar
  2. 2.
    Sanchez-Bravo GB, Garcia O, Galvez-Sanchez M, Violero JM, Rosa A, Carpena I, Ruiz-Morales JC, Canales-Vasquez J (2013) Influence of the precursor pyrolysis temperature on the microstructure and conductivity of Gd-doped ceria materials. J Eur Ceram Soc 33:1825–1832CrossRefGoogle Scholar
  3. 3.
    Omar S, Wachsman ED, Nino JC (2006) Influence of the precursor pyrolysis temperature on the microstructure and conductivity of Gd-doped ceria materials. Solid State Ionics 177:3199–3203CrossRefGoogle Scholar
  4. 4.
    Sánchez-Bautista C, Dos santos-Garcia AJ, Peña-Martinez J, Canales-Vázquez J (2010) The grain boundary effect on dysprosium doped ceria. Solid State Ionics 181:1665–1673CrossRefGoogle Scholar
  5. 5.
    Guo X, Mi S, Waser R (2005) Nonlinear electrical properties of grain boundaries in oxygen ion conductors: acceptor-doped ceria. Electrochem Solid-State Lett 8:J1–J3CrossRefGoogle Scholar
  6. 6.
    Mori T, Buchanan R, Ou DR, Ye F, Kobayashi T, Kim J-D, Zou J, Drennan J (2008) Design of nanostructured ceria-based solid electrolytes for development of IT-SOFC. J Solid State Electrochem 12:841–849CrossRefGoogle Scholar
  7. 7.
    Mori T, Kobayashi T, Wang Y, Drennan J, Nishimura T, Li J-G, Kobayashi H (2005) Synthesis and characterization of nano-hetero-structured Dy doped CeO2 solid electrolytes using a combination of spark plasma sintering and conventional sintering. J Am Ceram Soc 88:1981–1984CrossRefGoogle Scholar
  8. 8.
    Wu Y-C, Lin C-C (2014) The microstructures and property analysis of aliovalent cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) co-doped ceria-base electrolytes after an aging treatment. Int J Hydrog Energy 39:7988–8001CrossRefGoogle Scholar
  9. 9.
    Jaiswal N, Upadhyay S, Kumar D, Parkash O (2013) Ionic conductivity investigation in lanthanum (La) and strontium (Sr) co-doped ceria system. J Power Sources 222:230–236CrossRefGoogle Scholar
  10. 10.
    Cioatera N, Parvulescu V, Rolle A, Vannier RN (2009) Effect of strontium addition on europium-doped ceria properties. Solid State Ionics 180:681–687CrossRefGoogle Scholar
  11. 11.
    Zheng Y, He S, Ge L, Zhu M, Chen H, Guo L (2011) Effect of Sr on Sm-doped ceria electrolyte. Int J Hydrog Energy 36:5128–5135CrossRefGoogle Scholar
  12. 12.
    Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83:1–16CrossRefGoogle Scholar
  13. 13.
    Kilner JA, Brook RJ (1982) A study of oxygen ion conductivity in doped nonstoichiometric oxides. Solid State Ionics 6:237–252CrossRefGoogle Scholar
  14. 14.
    Garbout A, Bouattour S, Botelho do Rego AM, Ferraria A, Kolsi AW (2007) Synthesis, Raman and X-ray diffraction investigation od rubidium-doped Gd1.8Ti2O6.7 pyrochlore oxide via a sol-gel process. J Cryst Growth 304:374–382CrossRefGoogle Scholar
  15. 15.
    Cioatera N, Parvulescu V, Rolle A, Vannier RN (2012) Enhanced ionic conductivity of Sm, Gd-doped ceria induced by modification of powder synthesis procedure. Ceram Int 38:5461–5468CrossRefGoogle Scholar
  16. 16.
    Roisinel T, Rodriguez-Carvajal J, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7), 2000, p.118. See also
  17. 17.
    Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRefGoogle Scholar
  18. 18.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst A32: 751–767Google Scholar
  19. 19.
    Kim D-J (1989) Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M=Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions. J Am Ceram Soc 72:1415–1421CrossRefGoogle Scholar
  20. 20.
    Mukherjee D, Rao BG, Reddy BM (2016) CO and soot oxidation activity of doped ceria: influence of dopants. Appl Catal B Environ 197:105–115CrossRefGoogle Scholar
  21. 21.
    Acharya SA, Gaikwad VM, D’Souza SW, Barman SR (2014) Gd/Sm dopant-modified oxidation state and defect generation in nano-ceria. Solid State Ionics 260:21–29CrossRefGoogle Scholar
  22. 22.
    Guo M, Lu J, Wu Y, Wang Y, Luo M (2011) UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir 27:3872–3877CrossRefGoogle Scholar
  23. 23.
    Jaiswal N, Kumar D, Upadhyay S, Parkash O (2013) Effect of Mg and Sr co-doping on the electrical properties of ceria-based electrolyte materials for intermediate temperature solid oxide fuel cells. J Alloys Compd 577:456–462CrossRefGoogle Scholar
  24. 24.
    Cho PS, Cho YH, Park S-Y, Lee SB, Kim D-Y, Park H-M, Auchterlonie G, Drennan J, Lee J-H (2009) Grain-boundary conduction in gadolinia-doped ceria: the effect of SrO addition. J Electrochem Soc 156:B339–B344CrossRefGoogle Scholar
  25. 25.
    Anjaneya KC, Nayaka GP, Manjanna J, Ashwin Kumar VM, Govindaraj G, Ganesha KN (2014) Investigation on the Sr-doped ceria Ce1-xSrxO2-δ (x=0.05-0.2) as an electrolyte for intermediate temperature SOFC. J Alloys Compd 598:33–40CrossRefGoogle Scholar
  26. 26.
    Anirban Sk PT, Das PT, Nath TK, Dutta A (2015) Microstucture and electrical relaxation studies of chemically derived Gd-Nd co-doped nanocrystalline ceria electrolytes. Solid State Ionics 270:73–83CrossRefGoogle Scholar
  27. 27.
    Aparicio-Angles X, Roldan A, de Leeuw NH (2015) Gadolinium-vacancy clusters in the (111) surface of gadolinium-doped ceria: a density functional theory study. Chem Mater 27:7910–7917CrossRefGoogle Scholar
  28. 28.
    Li Z-P, Mori T, Zou J, Drennan (2013) Defects clustering and ordering in di- and trivalently doped ceria, J Mater Res Bull 48: 807–812Google Scholar
  29. 29.
    Burbano M, Nadin S, Marrocchelli D, Salanne M, Watson GW (2014) Ceria co-doping: synergistic or average effect? Phys Chem Chem Phys 16:8320–8331CrossRefGoogle Scholar
  30. 30.
    Tanwar K, Jaiswal N, Sharma P, Kumar D, Parkash O (2018) Structural analysis of Ce0.83Dy0.14Ca0.03O1.90 (CDC) and enhanced electrical conductivity of its composites with alkali carbonates for LT-SOFCs. J Alloys Compd 741:532–541CrossRefGoogle Scholar
  31. 31.
    Ali A, Raza R, Ullah KM, Rafique A, Wang B, Zhu B (2018) Alkaline earth and samarium co-doped ceria as efficient electrolytes, Appl Phys Lett 112: 043902–1-5Google Scholar
  32. 32.
    Chen MN, Zhang L, Gao HY, Xan Y, Ren JF, Lin ZJ (2018) DFT + U calculation of Sm3+ and Sr2+ co-doping effect on performance of CeO2-based electrolyte, Acta Phys Sin 67: 88202–1-11Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nicoleta Cioatera
    • 1
    • 2
    Email author
  • Elena-Adriana Voinea
    • 1
    • 2
  • A. Dobritescu
    • 1
  • Andreea Simionescu
    • 1
  • C. I. Resceanu
    • 2
  • C.-I. Spinu
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of CraiovaCraiovaRomania
  2. 2.INCESAUniversity of CraiovaCraiovaRomania

Personalised recommendations