, Volume 25, Issue 2, pp 727–735 | Cite as

Comparative study on electrosorptive behavior of NH4HF2-etched Ti3C2 and HF-etched Ti3C2 for capacitive deionization

  • Aihu Feng
  • Yang YuEmail author
  • Le Mi
  • Yun YuEmail author
  • Lixin Song
Original Paper


In this work, the MXene Ti3C2 with excellent electrical conductivity is obtained by etching Ti3AlC2 with NH4HF2 solution. The electrosorption performance, the electrochemical and physicochemical properties of as-prepared Ti3C2 are characterized. The results demonstrate that NH4HF2-etched Ti3C2 possesses the better intercalation pseudo-capacity and the specific capacitance is up to 78 F∙g−1, which is an increase of 34% than HF-etched Ti3C2. In addition, the desalination capacity of NH4HF2-etched Ti3C2 enhances 35.5% than that of HF-etched Ti3C2. When the initial conductivity of NaCl is ~ 1000 μS/cm, the desalination capacity of NH4HF2-etched Ti2C3 electrode is 12.1 mg∙g−1, and the pseudo-first-order model can well describe the electrosorption kinetics of NH4HF2-etched Ti3C2 electrode. Furthermore, the regeneration performance of the NH4HF2-etched Ti3C2 electrode is excellent. This study indicates a new kind of effective electrode material to improve the desalination performance of capacitive deionization (CDI) technology.


Ti3C2 NH4HF2 Desalination capacity CDI 


Funding information

This study was financially supported by the National Natural Science Foundation of China (Grant No. 51662019).

Supplementary material

11581_2018_2787_MOESM1_ESM.pdf (215 kb)
ESM 1 Linear plots of the Pseudo-second-order and Parabolic diffusion kinetic equation for the electrosorption onto NH4HF2-etched Ti3C2 electrode, and the parameters comarison of different kinetic models (PDF 214 kb)


  1. 1.
    Zou L, Vidalis I, Steele D, Michelmore A, Low SP, Verberk JQJC (2011) Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. J Membr Sci 369(1–2):420–428CrossRefGoogle Scholar
  2. 2.
    Welgemoed TJ, Schutte CF (2005) Capacitive deionization technology™: an alternative desalination solution. Desalination 183(1–3):327–340CrossRefGoogle Scholar
  3. 3.
    Macías C, Rasines G, Lavela P, Zafra MC, Tirado JL, Ania CO (2016) Mn-containing N-doped monolithic carbon aerogels with enhanced macroporosity as electrodes for capacitive deionization. ACS Sustain Chem Eng 4(5):2487–2494CrossRefGoogle Scholar
  4. 4.
    Wang G, Qian B, Dong Q, Yang J, Zhao Z, Qiu J (2013) Highly mesoporous activated carbon electrode for capacitive deionization. Sep Purif Technol 103:216–221CrossRefGoogle Scholar
  5. 5.
    Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950CrossRefGoogle Scholar
  6. 6.
    Liu YH, Hsi HC, Li KC, Hou CH (2016) Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization. ACS Sustain Chem Eng 4(9):4762–4770CrossRefGoogle Scholar
  7. 7.
    Wang G, Dong Q, Ling Z, Pan C, Yu C, Qiu J (2012) Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization. J Mater Chem 22(41):21819CrossRefGoogle Scholar
  8. 8.
    Gu X, Yang Y, Hu Y, Hu M, Huang J, Wang C (2015) Facile fabrication of graphene-polypyrrole-Mn composites as high-performance electrodes for capacitive deionization. J Mater Chem A 3(11):5866–5874CrossRefGoogle Scholar
  9. 9.
    Wang JW, Chen Y, Chen BZ (2015) A synthesis method of MnO2/activated carbon composite for electrochemical supercapacitors. J Electrochem Soc 162(8):A1654–A1661CrossRefGoogle Scholar
  10. 10.
    Walker PJ, Mauter MS, Whitacre JF (2015) Electrodeposited MnO2 for pseudocapacitive deionization: relating deposition condition and electrode structure to performance. Electrochim Acta 182:1008–1018CrossRefGoogle Scholar
  11. 11.
    Xia QX, Shinde NM, Yun JM, Zhang T, Mane RS, Mathur S, Kim KH (2018) Bismuth oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim Acta 271:351–360CrossRefGoogle Scholar
  12. 12.
    Yan P, Zhang R, Jia J, Wu C, Zhou A, Xu J, Zhang X (2015) Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. J Power Sources 284:38–43CrossRefGoogle Scholar
  13. 13.
    Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505CrossRefGoogle Scholar
  14. 14.
    Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6(14):11173–11179CrossRefGoogle Scholar
  15. 15.
    Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2(2):16098CrossRefGoogle Scholar
  16. 16.
    Levi MD, Lukatskaya MR, Sigalov S, Beidaghi M, Shpigel N, Daikhin L, Aurbach D, Barsoum MW, Gogotsi Y (2015) Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv Energy Mater 5(1):1400815CrossRefGoogle Scholar
  17. 17.
    Srimuk P, Kaasik F, Krüner B, Tolosa A, Fleischmann S, Jäckel N, Tekeli MC, Aslan M, Suss ME, Presser V (2016) MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J Mater Chem A 4(47):18265–18271CrossRefGoogle Scholar
  18. 18.
    Srimuk P, Halim J, Lee J, Tao Q, Rosen J, Presser V (2018) Two-dimensional molybdenum carbide (MXene) with divacancy ordering for brackish and seawater desalination via cation and anion intercalation. ACS Sustain Chem Eng 6(3):3739–3747CrossRefGoogle Scholar
  19. 19.
    Bao W, Tang X, Guo X, Choi S, Wang C, Gogotsi Y, Wang G (2018) Porous cryo-dried MXene for efficient capacitive deionization. Joule 2(4):778–787CrossRefGoogle Scholar
  20. 20.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597CrossRefGoogle Scholar
  21. 21.
    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23(37):4248–4253CrossRefGoogle Scholar
  22. 22.
    Feng A, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L (2017) Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater Des 114:161–166CrossRefGoogle Scholar
  23. 23.
    Feng A, Yu Y, Jiang F, Wang Y, Mi L, Yu Y, Song L (2017) Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram Int 43(8):6322–6328CrossRefGoogle Scholar
  24. 24.
    Yang ZY, Jin LJ, Lu GQ, Xiao QQ, Zhang YX, Jing L, Zhang XX, Yan YM, Sun KN (2014) Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Adv Funct Mater 24(25):3917–3925CrossRefGoogle Scholar
  25. 25.
    Halim J, Lukatskaya MR, Cook KM, Lu J, Smith CR, Naslund LA, May SJ, Hultman L, Gogotsi Y, Eklund P, Barsoum MW (2014) Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater 26(7):2374–2381CrossRefGoogle Scholar
  26. 26.
    Ahmed B, Anjum DH, Hedhili MN, Gogotsi Y, Alshareef HN (2016) H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 8(14):7580–7587CrossRefGoogle Scholar
  27. 27.
    Wang L, Zhang H, Wang B, Shen C, Zhang C, Hu Q, Zhou A, Liu B (2016) Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron Mater Lett 12(5):702–710CrossRefGoogle Scholar
  28. 28.
    Worsley MA, Kucheyev SO, Mason HE, Merrill MD, Mayer BP, Lewicki J, Valdez CA, Suss ME, Stadermann M, Pauzauskie PJ, Satcher JH, Biener J, Baumann TF (2012) Mechanically robust 3D graphene macroassembly with high surface area. Chem Commun 48(67):8428–8430CrossRefGoogle Scholar
  29. 29.
    Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM (2013) Review on the science and technology of water desalination by capacitive deionization. Prog Mater Sci 58(8):1388–1442CrossRefGoogle Scholar
  30. 30.
    Ottakam Thotiyl MM, Freunberger SA, Peng Z, Chen Y, Liu Z, Bruce PG (2013) A stable cathode for the aprotic Li-O2 battery. Nat Mater 12(11):1050–1056CrossRefGoogle Scholar
  31. 31.
    Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257(3):887–898CrossRefGoogle Scholar
  32. 32.
    Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum MW (2016) X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci 362:406–417CrossRefGoogle Scholar
  33. 33.
    Naguib M, Mashtalir O, Lukatskaya MR, Dyatkin B, Zhang C, Presser V, Gogotsi Y, Barsoum MW (2014) One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem Commun 50(56):7420–7423CrossRefGoogle Scholar
  34. 34.
    Gao Y, Wang L, Zhou A, Li Z, Chen J, Bala H, Hu Q, Cao X (2015) Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater Lett 150:62–64CrossRefGoogle Scholar
  35. 35.
    Li H, Ma Y, Niu R (2016) Improved capacitive deionization performance by coupling TiO2 nanoparticles with carbon nanotubes. Sep Purif Technol 171:93–100CrossRefGoogle Scholar
  36. 36.
    El-Deen AG, Choi J-H, Khalil KA, Almajid AA, Barakat NAM (2014) A TiO2 nanofiber/activated carbon composite as a novel effective electrode material for capacitive deionization of brackish water. RSC Adv 4(110):64634–64642CrossRefGoogle Scholar
  37. 37.
    Kim C, Lee J, Kim S, Yoon J (2014) TiO2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization. Desalination 342:70–74CrossRefGoogle Scholar
  38. 38.
    Srimuk P, Ries L, Zeiger M, Fleischmann S, Jäckel N, Tolosa A, Krüner B, Aslan M, Presser V (2016) High performance stability of titania decorated carbon for desalination with capacitive deionization in oxygenated water. RSC Adv 6(108):106081–106089CrossRefGoogle Scholar
  39. 39.
    Zhang L, Zhang F, Yang X, Long G, Wu Y, Zhang T, Leng K, Huang Y, Ma Y, Yu A, Chen Y (2013) Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci Rep 3:1408CrossRefGoogle Scholar
  40. 40.
    Lukatskaya MR, Kota S, Lin Z, Zhao M-Q, Shpigel N, Levi MD, Halim J, Taberna P-L, Barsoum MW, Simon P, Gogotsi Y (2017) Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 6:17105CrossRefGoogle Scholar
  41. 41.
    Chen Y, Yue M, Huang ZH, Kang F (2014) Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization. Chem Eng J 252:30–37CrossRefGoogle Scholar
  42. 42.
    Pan L, Wang X, Gao Y, Zhang Y, Chen Y, Sun Z (2009) Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes. Desalination 244:139–143CrossRefGoogle Scholar
  43. 43.
    Yoon Y, Lee K, Baik C, Yoo H, Min M, Park Y, Lee SM, Lee H (2013) Anti-solvent derived non-stacked reduced graphene oxide for high performance supercapacitors. Adv Mater 25(32):4437–4444CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations