Advertisement

Ionics

, Volume 25, Issue 6, pp 2903–2912 | Cite as

Enhancement of the capacitance properties and the photoelectrochemical performances of P3HT film by incorporation of nickel oxide nanoparticles

  • Yasser GhalmiEmail author
  • Farid HabelhamesEmail author
  • Abdelfetteh SayahEmail author
  • Ahmed Bahloul
  • Balkacem Nessark
  • Hassina Derbal-Habak
  • Yvan Bonnassieux
  • Jean-Michel Nunzi
Original Paper
  • 84 Downloads

Abstract

P3HT films were modified by incorporation of different amounts of nickel oxide (NiO). The nickel oxide powder was synthesized by chronoamperometry. The composites were further dissolved and deposited by the spin-coating method on indium-tin oxide (ITO) substrates. Effects of NiO content on the morphology structure and optical properties of P3HT films were investigated by means of XRD, SEM, AFM, and UV–Vis spectroscopy. Electrochemical and photoelectrochemical performances were evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), galvanostatic charge–discharge, and photocurrent measurements. Results show that NiO dispersed uniformly in P3HT thin films and modified the surface roughness and absorption of the deposited thin films. A remarkable improvement of photocurrent density and electrochemical capacitance is observed for an NiO content ranging between 1 and 10 wt%. The specific capacitance obtained for P3HT alone is about 20.8 F g−1, this value increases to 81.4 F g−1for the P3HT-NiO 10 wt% composite film at 0.1-A/g current density.

Keywords

NiO P3HT Composite film Photocurrent Supercapacitors 

References

  1. 1.
    Strohm S, Machui F, Langner S, Kubis P, Gasparini N, Salvador M, McCulloch I, Egelhaaf HJ, Brabec CJ (2014) P3HT: non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods. Energy Environ Sci 7:2792–2802.  https://doi.org/10.1039/C4EE01222D. CrossRefGoogle Scholar
  2. 2.
    Park S, Kim H, Kang Y, Kim D, Kang J (2010) Organic solar cells employing magnetron sputtered p-type nickel oxide thinfilm as the anode buffer layer. Sol Energy Mater Sol Cells 94:2332–2336.  https://doi.org/10.1016/j.solmat.2010.08.004 CrossRefGoogle Scholar
  3. 3.
    Krebs F, Alstrup J, Spanggaard H, Larsen K, Kold E (2004) Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate. Sol Energy Mater Sol Cells 83:293–300.  https://doi.org/10.1016/j.solmat.2004.02.031 CrossRefGoogle Scholar
  4. 4.
    Ruzmetov D, Oleshko V, Haney P, Lezec H, Karki K, Baloch K, Agrawal A, Davydov A, Krylyuk S, Liu Y, Huang J, Tanase M, Cumings J, Talin A (2012) Electrolyte stability determines scaling limits for solid-state 3DLi ion batteries. Nano Lett 12:505–511.  https://doi.org/10.1021/nl204047z CrossRefGoogle Scholar
  5. 5.
    Hall P, Mirzaeian M, Fletcher S, Sillars F, Rennie A, Shitta-Bey G, Wilson G, CrudenA CR (2010) Energy storage in electrochemical capacitors: designing functionalmaterials to improve performance. Energy Environ Sci 3:1238–1251.  https://doi.org/10.1039/c0ee00004c CrossRefGoogle Scholar
  6. 6.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(845–854):845–854.  https://doi.org/10.1038/nmat2297 CrossRefGoogle Scholar
  7. 7.
    Notten PHL, Roozeboom F, Niessen RAH, Baggetto L (2007) 3-D integrated all-solid-state rechargeable batteries. Adv Mater 19:4564–4567.  https://doi.org/10.1002/adma.200702398 CrossRefGoogle Scholar
  8. 8.
    Sayah A, Habelhames F, Bahloul A, Nessark B, Bonnassieux Y, Tendelier D, ElJouad M (2018) Electrochemical synthesis of polyaniline-exfoliated graphene composite films and their capacitance properties. J Electroanal Chem 818:26–34.  https://doi.org/10.1016/j.jelechem.2018.04.016 CrossRefGoogle Scholar
  9. 9.
    Arici E, Meissner D, Schäffler F, Sariciftci NS (2003) Core/shell nanomaterials in photovoltaics. Int J Photoenergy 5:199–208CrossRefGoogle Scholar
  10. 10.
    Fumagalli F, Bellani S, Schreier M, Leonardi S, Rojas HC, Ghadirzadeh A, Tullii G, Savoini A, Marra G, Meda L, Grätzel M, Lanzani G, Mayer MT, Antognazza MR, Fonzo FD (2016) Hybrid organic–inorganic H2-evolving photocathodes: understanding the route towards high performance organic photoelectrochemical water splitting. J Mater Chem A 4:2178–2187CrossRefGoogle Scholar
  11. 11.
    Vu QT, Pavlik M, Hebestreit N, Rammelt U, Plieth W, Pfleger J (2005) Nanocomposites based on titanium dioxide and polythiophene: structure and properties. ReacFuncPolym 65:69–77Google Scholar
  12. 12.
    Habelhames F, Lamiri L, Zerguine W, Nessark B (2013) Improvement of photoelectrochemical and optical characteristics of MEH-PPV using titanium dioxide nanoparticles. Mater Sci Semicond Process 16:727–731.  https://doi.org/10.1016/j.mssp.2012.12.015 CrossRefGoogle Scholar
  13. 13.
    Habelhames F, Zerguine W, Lamiri L, Nessark B, Derbal-Habak H (2013) Morphology and photoelectrochemical characterization of MEH-PPV/PCBM composite film doped with TiO2 nanoparticles. Acta Metall Sin (Engl Lett) 26:373–377.  https://doi.org/10.1007/S40195-012-0269-z CrossRefGoogle Scholar
  14. 14.
    Rojas HC, Bellani S, Sarduy EA, Fumagalli F, Mayer MT, Schreier M, Gratzel M, Fonzo FD, Antognazza MR (2017) All solution-processed, hybrid organic–inorganic photocathode for hydrogen evolution. Acs Omega 2:3424–3431.  https://doi.org/10.1021/acsomega.7b00558 CrossRefGoogle Scholar
  15. 15.
    Derbal-Habak H, Bergeret C, Cousseau J, Nunzi JM (2011) Improving the current density Jsc of organic solar cells P3HT:PCBM by structuring the photoactivelayerwithfunctionalized SWCNTs. Sol Energy Mater Sol Cells 95:S53–S56CrossRefGoogle Scholar
  16. 16.
    Pathak D, Wagner T, Adhikari T, Nunzi JM (2015) Photovoltaic performance of AgInSe2 conjugated polymer hybrid system bulk heterojunction solar cells. Synthetic Metals 199:87–92CrossRefGoogle Scholar
  17. 17.
    Jabeen U, Adhikari T, Mujtaba Shah S, Pathak D, Wagner T, Nunzi JM (2017) Influence of the dopant concentration on structural, optical and photovoltaic properties of Cu-doped ZnS nanocrystals based bulk heterojunction hybrid solar cells. Eur Phys J Appl Phys 78:34811CrossRefGoogle Scholar
  18. 18.
    Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. PNAS 105:2783–2787.  https://doi.org/10.1073/pnas.0711990105 CrossRefGoogle Scholar
  19. 19.
    Chapel A, Dkhil SB, Therias S, Gardette JL, Hannani D, Poize G, Gaceur M, Shah SM, Chung PWW, Ackermann CV, Margeat O, Rivaton A, Ackermann J (2016) Effect of ZnO nanoparticles on the photochemical and electronic stability of P3HT used in polymer solar cells. Sol Energy Mater Sol Cells 155:79–87.  https://doi.org/10.1016/j.solmat.2016.04.052 CrossRefGoogle Scholar
  20. 20.
    Gonçalves R, Moraes FC, Pereira EC (2016) Reduced graphene oxide enhancing the photoelectrochemical properties of poly(3-hexylthiophene). Carbon 109:57–64.  https://doi.org/10.1016/j.carbon.2016.07.041 CrossRefGoogle Scholar
  21. 21.
    Wang G, Hirasa T, Moses D, Heeger AJ (2004) Fabrication of regioregular poly(3-hexylthiophene) field-effect transistors by dip-coating. Synth Met 146:127–132.  https://doi.org/10.1016/j.synthmet.2004.06.026 CrossRefGoogle Scholar
  22. 22.
    Villers BT, Tassone CJ, Tolbert SH, Schwartz BJ (2009) Improving the reproducibility of P3HT:PCBM solar cells by controlling the PCBM/cathode interface. J Phys Chem C 113:18978–18982.  https://doi.org/10.1021/jp9082163 CrossRefGoogle Scholar
  23. 23.
    Loheeswaran S, Thanihaichelvan M, Ravirajan P, Nelson J (2017) Controlling recombination kinetics of hybrid poly-3-hexylthiophene (P3HT)/titanium dioxide solar cells by self-assembled monolayers. J Mater Sci Mater Electron 28:4732–4737CrossRefGoogle Scholar
  24. 24.
    Liu H, Li M, Yang J, Hu C, Shang J, Zhai H (2018) In situ construction of conjugated polymer P3HT coupled hierarchical ZnO composite with Z-scheme enhanced visible-light photocatalytic activity. Mater Res Bull 106:19–27.  https://doi.org/10.1016/j.materresbull.2018.05.026 CrossRefGoogle Scholar
  25. 25.
    Zhang W, Nguyen NA, Murray R, Xin J, Mackay ME (2017) A comparative study on the morphology of P3HT: PCBM solar cells with the addition of Fe3O4 nanoparticles by spin and rod coating methods. J Nanopart Res 19:315–323CrossRefGoogle Scholar
  26. 26.
    Yu XX, Yin H, Li HX, Zhang W, Zhao H, Li C, Zhu MQ (2017) Piezo-phototronic effect modulated self-powered UV/visible/near-infrared photodetectors based on CdS: P3HT microwires. Nano Energy 34:155–163.  https://doi.org/10.1016/j.nanoen.2017.02.033 CrossRefGoogle Scholar
  27. 27.
    Heo K, Miesch C, Na JH, Emrick T, Hayward RC (2018) Assembly of P3HT/CdSe nanowire networks in an insulating polymer host. Soft Matter 14:5327–5332.  https://doi.org/10.1039/C8SM01001C CrossRefGoogle Scholar
  28. 28.
    Heo K, Miesch C, Na JH, Emrick T, Hayward RC (2018) Assembly of P3HT/CdSe nanowire networks in an insulating polymer host. Soft Matter 3:1525–1533.  https://doi.org/10.1039/C8SM01001C Google Scholar
  29. 29.
    Ikram M, Imran M, Nunzi JM, Bobbara SR, Ali S, U-Din I (2015) Efficient and low cost inverted hybrid bulk heterojunction solar cells. J Renewable Sustain Energy 7:043148CrossRefGoogle Scholar
  30. 30.
    Chan IM, Hong FC (2004) Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode. Thin Solid Films 450:304–311.  https://doi.org/10.1016/j.tsf.2003.10.022 CrossRefGoogle Scholar
  31. 31.
    Chtouki T, Soumahoro L, Kulyk B, Erguig H, Elidrissi B, Sahraoui B (2017) Spin-coated tin-dopedNiOthinfilmsforthirdorder non linearoptical applications. Optik 136:237–243.  https://doi.org/10.1016/j.ijleo.2017.01.110 CrossRefGoogle Scholar
  32. 32.
    Nguyen DT, Ferrec A, Keraudy J, Bernède JC, Stephant N, Cattin L, Jouan PY (2014) Effect of the deposition conditionsofNiOanodebufferlayersinorganicsolarcells, onthe propertiesofthesecells. Appl Surf Sci 311:110–116.  https://doi.org/10.1016/j.apsusc.2014.05.020 CrossRefGoogle Scholar
  33. 33.
    Wu MS, Huang YA, Yang CH, Jow JJ (2007) Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. Int J Hydrog Energy 32:4153–4159.  https://doi.org/10.1016/j.ijhydene.2007.06.001 CrossRefGoogle Scholar
  34. 34.
    Jamal RK, Naji I (2016) Electrical properties of pure NiO and NiO:Au thin films prepared by using pulsed laser deposition. Iraqi J Phys 14:37–43 www.iasj.net/iasj?func=article&aId=115237 Google Scholar
  35. 35.
    Bandara J, Divarathne CM, Nanayakkara SD (2004) Fabrication of n–pjunction electrodes made of n-type SnO2 and p-type NiO for control of charge recombination in dye sensitized solar cells. J Solar Energy Mater Solar Cells 81:429–437.  https://doi.org/10.1016/j.solmat.2003.11.027 CrossRefGoogle Scholar
  36. 36.
    Srinivasan V, Weidner JW (1997) An electrochemical route for making porousnickel oxide electrochemical capacitors. Electrochem Soc 144:210–213.  https://doi.org/10.1149/1.1837859 CrossRefGoogle Scholar
  37. 37.
    Gupta A, Akhtar AJ, Saha SK (2013) In-situ growth of P3HT/graphene composites for supercapacitor application. J Mater Chem Phys 140(1–6):616–621.  https://doi.org/10.1016/j.matchemphys.2013.04.015 CrossRefGoogle Scholar
  38. 38.
    Lou X, Zhao X, He X (2009) Boron doping effects in electrochromic properties of NiOfilms prepared by sol–gel. J Solar Energy 83:2103–2108.  https://doi.org/10.1016/j.solener.2009.06.020 CrossRefGoogle Scholar
  39. 39.
    Xia XH, Tu JP, Zhang J, Wang XL, Zhang WK, Huang H (2008) Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. J Solar Energy Mater Solar Cells 92:628–633.  https://doi.org/10.1016/j.solmat.2008.01.009. CrossRefGoogle Scholar
  40. 40.
    Patil PS, Kadam LD (2002) Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Appl Surf Sci 199:211–221.  https://doi.org/10.1016/S0169-4332(02)00839-5.
  41. 41.
    Chrissanthopoulos A, Baskoutas S, Bouropoulos N, Dracopoulos V, Poulopoulos P, Yannopoulos SN (2011) Synthesis and characterization of ZnO/NiO p–n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. J Photonics Nanostruct Fundam Appl 9:132–139.  https://doi.org/10.1016/j.photonics.2010.11.002 CrossRefGoogle Scholar
  42. 42.
    Lu YM, Hwang WS, Yang JS, Chuang HC (2002) Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering. Thin Solid Films 420–421:54–61.  https://doi.org/10.1016/S0040-6090(02)00654-5 CrossRefGoogle Scholar
  43. 43.
    Sonavane AC, Inamdar AI, Shinde PS, Deshmukh HP, Patil RS, Patil PS (2010) Efficient electrochromic nickel oxide thin films by electrodeposition. J Alloys Compd 489:667–673.  https://doi.org/10.1016/j.jallcom.2009.09.146 CrossRefGoogle Scholar
  44. 44.
    Wu K, Zhao J, Wu R, Ruan B, Liu H, Wu M (2018) The impact of Fe3+ doping on the flexible polythiophene electrodes for supercapacitors. J Electroanal Chem 823:527–530 doi.org/10.1016/j.jelechem.2018.06.052 CrossRefGoogle Scholar
  45. 45.
    Manoli K, Dumitru LM, Mulla MY, Magliulo M, Franco CD, Santacroce MV, Scamarcio G, Torsi L (2014) A comparative (2014) study of the gas sensing behavior in P3HT-and PBTTT-based OTFTs: the influence of film morphology and contact electrode position. Sensors 14:16869–16880.  https://doi.org/10.3390/s140916869 CrossRefGoogle Scholar
  46. 46.
    Giannopoulos P, Andreopoulou AK, Lianos P, Nikolakopoulou A, Sygellou L, Kallitsis JK (2014) An alternative methodology for anchoring organic sensitizers onto TiO2 semiconductors for photoelectrochemical applications. J Mater Chem 2:20748–20759.  https://doi.org/10.1039/c4ta04515g CrossRefGoogle Scholar
  47. 47.
    Wu F, Shan Y, Wang R, Zhu L (2016) Incorporation of diketopyrrolopyrrole dye to improve photovoltaic performance of P3HT: PCBM based bulk heterojunction polymer solar cells. Org Electron 31:171–176.  https://doi.org/10.1016/j.orgel.2016.01.028 CrossRefGoogle Scholar
  48. 48.
    Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2014) Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature. Nanoscale Res Lett 9:467–479CrossRefGoogle Scholar
  49. 49.
    Tullii G, Desii A, Bossio C, Bellani S, Colombo M, Martino N, Antognazza MR, Lanzani G (2017) Bimodal functioning of a mesoporous, light sensitive polymer/electrolyte interface. Org Electron 46:88–98.  https://doi.org/10.1016/j.orgel.2017.04.007 CrossRefGoogle Scholar
  50. 50.
    Adhikari T, Bobbara SR, Nunzi JM, Lebel O (2018) Efficiency enhancement of ternary blend organic photovoltaic cells with molecular glasses as guest acceptors. Org Electr 53:74–82CrossRefGoogle Scholar
  51. 51.
    Bielecka U, Lutsyk P, Janus K, Sworakowski J, Bartkowiak W (2011) Effect of solution aging on morphology and electrical characteristics of regioregular P3HT FETs fabricated by spin coating and spray coating. Org Electron 12:1768–1776.  https://doi.org/10.1016/j.orgel.2011.06.027 CrossRefGoogle Scholar
  52. 52.
    Chang H, Wang P, Li H, Zhang J, Yan D (2013) Solvent vapor assisted spin-coating: a simple method to directly achieve high mobility from P3HT based thin film transistors. Synth Met 184:1–4.  https://doi.org/10.1016/j.synthmet.2013.09.031. CrossRefGoogle Scholar
  53. 53.
    Gollu SR, Sharma R, Srinivas G, Kundu S, Gupta D (2014) Effects of incorporation of copper sulfide nanocrystals on the performance of P3HT: PCBM based inverted solar cells. Org Electron 15:2518–2525.  https://doi.org/10.1016/j.orgel.2014.06.035. CrossRefGoogle Scholar
  54. 54.
    Al-Ghamdi AA, Mahmoud WE, Yaghmour SJ, Al-Marzouki FM (2009) Structure and optical properties of nanocrystalline NiO thin film synthesized by sol–gel spin-coating method. J Alloys Compd 486:9–13.  https://doi.org/10.1016/j.jallcom.2009.06.139 CrossRefGoogle Scholar
  55. 55.
    Wang J, Wei L, Zhang L, Jiang C, Kong ESW, Zhang Y (2012) Preparation of high aspect ratio nickel oxide nanowires and their gas sensing devices with fast response and high sensitivity. J Alloys Compd 22:8327–8335.  https://doi.org/10.1039/C2JM16934G Google Scholar
  56. 56.
    El-Kemary M, Nagy N, El-Mehasseb I (2013) Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process 16:1747–1752.  https://doi.org/10.1016/j.mssp.2013.05.018 CrossRefGoogle Scholar
  57. 57.
    Kim TH, Jeon HJ, Lee JW, Nah YC (2015) Enhanced electrochromic properties of hybrid P3HT/WO3 composites with multiple colorations. Electrochem Commun 57:65–69.  https://doi.org/10.1016/j.elecom.2015.05.008 CrossRefGoogle Scholar
  58. 58.
    HabElhames F, Nessark B, Boumaza N, Bahloul A, Bouhafs D, Cheriet A (2009) Electrochemical and photoelectrochemical study of gallium arsenide–polybithiophene composite. Synth Met 159:1349–1352.  https://doi.org/10.1016/j.synthmet.2009.03.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yasser Ghalmi
    • 1
    Email author
  • Farid Habelhames
    • 1
    Email author
  • Abdelfetteh Sayah
    • 1
    Email author
  • Ahmed Bahloul
    • 1
  • Balkacem Nessark
    • 1
  • Hassina Derbal-Habak
    • 2
  • Yvan Bonnassieux
    • 3
  • Jean-Michel Nunzi
    • 4
  1. 1.Laboratoire d’Electrochimie et Matériaux (LEM), Département de Génie des Procédés, Faculté de TechnologieUniversité Ferhat AbbasSétif 1Algeria
  2. 2.Laboratoire des Technologies Innovantes (LTI)Université de Jules VerneCreilFrance
  3. 3.Laboratoire de Physique des Interfaces et des Couches MincesEcole PolytechniquePalaiseauFrance
  4. 4.Department of Physics, Engineering Physics and Astronomy, Department of ChemistryQueen’s UniversityKingstonCanada

Personalised recommendations