Advertisement

Ionics

, Volume 25, Issue 2, pp 697–705 | Cite as

Synthesis of hollow NiO nanostructures and their application for supercapacitor electrode

  • Xiaoshuang Wang
  • Ling ChenEmail author
  • Fei Li
  • Shuoqing Zhang
  • Xiangcheng Chen
  • Juanjuan Yin
Original Paper
  • 62 Downloads

Abstract

Hollow NiO nanostructures were fabricated by calcining Ni(OH)2 precursors built on the basis of Cu2O templates. The structures and morphology of the products were characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. As the temperature rose from 250 to 550 °C, the products showed stable cubic structures with the lengths about 600 nm of a side at first, then some products deformed into cylinders and debris is generated, and the NiO nanostructures collapsed at 550 °C. Electrochemical test results from cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charging–discharging demonstrated that the sample synthesized at 450 °C showed better electrochemical properties. The hollow NiO nanostructures obtained at 450 °C delivered a capacitance of 1200 F g−1 at 1 A g−1 and displayed good rate capability with a large capacitance of 1010 F g−1 at 5 A g−1. After improving the cycle stability, it will exhibit a more admirable prospect of application.

Keywords

Nickel oxide Nanostructures Pseudocapacitor Specific capacitance 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zhang C, Chen Q, Zhan H (2016) Supercapacitors based on reduced graphene oxide nanofibers supported Ni(OH)2 nanoplates with enhanced electrochemical performance. ACS Appl Mater Interfaces 8(35):22977–22987.  https://doi.org/10.1021/acsami.6b05255 CrossRefGoogle Scholar
  2. 2.
    Fu Y, Song J, Zhu Y, Cao C (2014) High-performance supercapacitor electrode based on amorphous mesoporous Ni(OH)2 nanoboxes. J Power Sources 262:344–348.  https://doi.org/10.1016/j.jpowsour.2014.04.002 CrossRefGoogle Scholar
  3. 3.
    Jiang C, Zhao B, Cheng J, Li J, Zhang H, Tang Z, Yang J (2015) Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochim Acta 173:399–407.  https://doi.org/10.1016/j.electacta.2015.05.081 CrossRefGoogle Scholar
  4. 4.
    Zhan B, Liu C, Chen H, Shi H, Wang L, Chen P, Huang W, Dong X (2014) Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection. Nanoscale 6(13):7424–7429.  https://doi.org/10.1039/c4nr01611d CrossRefGoogle Scholar
  5. 5.
    Meng T, Ma P-P, Chang J-L, Wang Z-H, Ren T-Z (2014) The electrochemical capacitive behaviors of NiO nanoparticles. Electrochim Acta 125:586–592.  https://doi.org/10.1016/j.electacta.2014.01.144 CrossRefGoogle Scholar
  6. 6.
    Xu L, Chen H, Shu K (2015) Ni(OH)2/RGO nanosheets constituted 3D structure for high-performance supercapacitors. J Sol-Gel Sci Technol 77(2):463–469.  https://doi.org/10.1007/s10971-015-3876-0 CrossRefGoogle Scholar
  7. 7.
    Sk MM, Yue CY, Ghosh K, Jena RK (2016) Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J Power Sources 308:121–140.  https://doi.org/10.1016/j.jpowsour.2016.01.056 CrossRefGoogle Scholar
  8. 8.
    Wang B, Chen JS, Wang Z, Madhavi S, Lou XWD (2012) Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv Energy Mater 2(10):1188–1192.  https://doi.org/10.1002/aenm.201200008 CrossRefGoogle Scholar
  9. 9.
    Kate RS, Khalate SA, Deokate RJ (2018) Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J Alloys Compd 734:89–111.  https://doi.org/10.1016/j.jallcom.2017.10.262 CrossRefGoogle Scholar
  10. 10.
    Zhang W-M, Wu X-L, Hu J-S, Guo Y-G, Wan L-J (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18(24):3941–3946.  https://doi.org/10.1002/adfm.200801386 CrossRefGoogle Scholar
  11. 11.
    Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23(18):2076–2081.  https://doi.org/10.1002/adma.201100058 CrossRefGoogle Scholar
  12. 12.
    Kannan V, Inamdar AI, Pawar SM, Kim HS, Park HC, Kim H, Im H, Chae YS (2016) Facile route to NiO nanostructured electrode grown by oblique angle deposition technique for supercapacitors. ACS Appl Mater Interfaces 8(27):17220–17225.  https://doi.org/10.1021/acsami.6b03714 CrossRefGoogle Scholar
  13. 13.
    Yuan YF, Lin JX, Zhang D, Yin SM, Zhao YL, Yang JL, Chen YB, Guo SY (2017) Freestanding hierarchical NiO/MnO2 core/shell nanocomposite arrays for high-performance electrochemical energy storage. Electrochim Acta 227:303–309.  https://doi.org/10.1016/j.electacta.2017.01.002 CrossRefGoogle Scholar
  14. 14.
    Hu Q, Gu Z, Zheng X, Zhang X (2016) Three-dimensional Co3O4 @NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chem Eng J 304:223–231.  https://doi.org/10.1016/j.cej.2016.06.097 CrossRefGoogle Scholar
  15. 15.
    Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3(43):21380–21423.  https://doi.org/10.1039/c5ta05523g CrossRefGoogle Scholar
  16. 16.
    Fei JB, Cui Y, Yan XH, Qi W, Yang Y, Wang KW, He Q, Li JB (2008) Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv Mater 20(3):452–456.  https://doi.org/10.1002/adma.200701231 CrossRefGoogle Scholar
  17. 17.
    Su L, Gao L, Du Q, Hou L, Ma Z, Qin X, Shao G (2018) Construction of NiCo2O4 @MnO2 nanosheet arrays for high-performance supercapacitor: highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution. J Alloys Compd 749:900–908.  https://doi.org/10.1016/j.jallcom.2018.03.353 CrossRefGoogle Scholar
  18. 18.
    Zhu J, Zhang S, Wang D (2017) Facile fabrication of coal-derived activated carbon/Co3O4 nanocomposites with superior electrochemical performance. Ionics 23(7):1927–1931.  https://doi.org/10.1007/s11581-017-2145-3 CrossRefGoogle Scholar
  19. 19.
    Wang D, Wang Q, Wang T (2013) Controlled synthesis of porous nickel oxide nanostructures and their electrochemical capacitive behaviors. Ionics 19(3):559–570.  https://doi.org/10.1007/s11581-012-0781-1 CrossRefGoogle Scholar
  20. 20.
    Padmanathan N, Selladurai S, Rahulan K, O'Dwyer C, Razeeb K (2015) NiO hybrid nanoarchitecture-based pseudocapacitor in organic electrolyte with high rate capability and cycle life. Ionics 21(9):2623–2631.  https://doi.org/10.1007/s11581-015-1444-9 CrossRefGoogle Scholar
  21. 21.
    Yadav MS, Tripathi SK (2017) Synthesis and characterization of nanocomposite NiO/activated charcoal electrodes for supercapacitor application. Ionics 23(10):2919–2930.  https://doi.org/10.1007/s11581-017-2026-9 CrossRefGoogle Scholar
  22. 22.
    Chi-Chang Hu K-HC, Lin M-C, Wu Y-T (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6(12):2690–2695CrossRefGoogle Scholar
  23. 23.
    Zhu Z, Ping J, Huang X, Hu J, Chen Q, Ji X, Banks CE (2011) Hexagonal nickel oxide nanoplate-based electrochemical supercapacitor. J Mater Sci 47(1):503–507.  https://doi.org/10.1007/s10853-011-5826-8 CrossRefGoogle Scholar
  24. 24.
    Cheng G, Yan Y, Chen R (2015) From Ni-based nanoprecursors to NiO nanostructures: morphology-controlled synthesis and structure-dependent electrochemical behavior. New J Chem 39(1):676–682.  https://doi.org/10.1039/c4nj01398k CrossRefGoogle Scholar
  25. 25.
    Anandha Babu G, Ravi G, Mahalingam T, Kumaresavanji M, Hayakawa Y (2015) Influence of microwave power on the preparation of NiO nanoflakes for enhanced magnetic and supercapacitor applications. Dalton Trans 44(10):4485–4497.  https://doi.org/10.1039/c4dt03483j CrossRefGoogle Scholar
  26. 26.
    Li J, Zhao W, Huang F, Manivannan A, Wu N (2011) Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 3(12):5103.  https://doi.org/10.1039/c1nr10802f CrossRefGoogle Scholar
  27. 27.
    Liu T, Jiang C, Cheng B, You W, Yu J (2017) Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance. J Power Sources 359:371–378.  https://doi.org/10.1016/j.jpowsour.2017.05.100 CrossRefGoogle Scholar
  28. 28.
    Yus J, Ferrari B, Sanchez-Herencia A, Caballero A, Morales J, Gonzalez Z (2017) In situ synthesis and electrophoretic deposition of NiO/Ni core-shell nanoparticles and its application as pseudocapacitor. Coatings 7(11).  https://doi.org/10.3390/coatings7110193
  29. 29.
    Lee JW, Ahn T, Kim JH, Ko JM, Kim J-D (2011) Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim Acta 56(13):4849–4857.  https://doi.org/10.1016/j.electacta.2011.02.116 CrossRefGoogle Scholar
  30. 30.
    Zhang S, Pang Y, Wang Y, Dong B, Lu S, Li M, Ding S (2018) NiO nanosheets anchored on honeycomb porous carbon derived from wheat husk for symmetric supercapacitor with high performance. J Alloys Compd 735:1722–1729.  https://doi.org/10.1016/j.jallcom.2017.11.294 CrossRefGoogle Scholar
  31. 31.
    Ren B, Fan M, Liu Q, Wang J, Song D, Bai X (2013) Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode. Electrochim Acta 92:197–204.  https://doi.org/10.1016/j.electacta.2013.01.009 CrossRefGoogle Scholar
  32. 32.
    Cheng J, Cao G-P, Yang Y-S (2006) Characterization of sol–gel-derived NiOx xerogels as supercapacitors. J Power Sources 159(1):734–741.  https://doi.org/10.1016/j.jpowsour.2005.07.095 CrossRefGoogle Scholar
  33. 33.
    Zhang G, Li W, Xie K, Yu F, Huang H (2013) A one-step and binder-free method to fabricate hierarchical nickel-based supercapacitor electrodes with excellent performance. Adv Funct Mater 23(29):3675–3681.  https://doi.org/10.1002/adfm.201203418 CrossRefGoogle Scholar
  34. 34.
    Meher SK, Justin P, Rao GR (2011) Nanoscale morphology dependent pseudocapacitance of NiO: influence of intercalating anions during synthesis. Nanoscale 3(2):683–692.  https://doi.org/10.1039/c0nr00555j CrossRefGoogle Scholar
  35. 35.
    Cai G, Wang X, Cui M, Darmawan P, Wang J, AL-S E, Lee PS (2015) Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12:258–267.  https://doi.org/10.1016/j.nanoen.2014.12.031 CrossRefGoogle Scholar
  36. 36.
    Yao M, Hu Z, Xu Z, Liu Y, Liu P, Zhang Q (2015) Template synthesis and characterization of nanostructured hierarchical mesoporous ribbon-like NiO as high performance electrode material for supercapacitor. Electrochim Acta 158:96–104.  https://doi.org/10.1016/j.electacta.2014.12.058 CrossRefGoogle Scholar
  37. 37.
    Cai Y, Ma J, Wang T (2014) Hydrothermal synthesis of α-Ni(OH)2 and its conversion to NiO with electrochemical properties. J Alloys Compd 582:328–333.  https://doi.org/10.1016/j.jallcom.2013.07.206 CrossRefGoogle Scholar
  38. 38.
    Meng G, Yang Q, Wu X, Wan P, Li Y, Lei X, Sun X, Liu J (2016) Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano Energy 30:831–839.  https://doi.org/10.1016/j.nanoen.2016.09.012 CrossRefGoogle Scholar
  39. 39.
    Kundu M, Karunakaran G, Kuznetsov D (2017) Green synthesis of NiO nanostructured materials using Hydrangea paniculata flower extracts and their efficient application as supercapacitor electrodes. Powder Technol 311:132–136.  https://doi.org/10.1016/j.powtec.2017.01.085 CrossRefGoogle Scholar
  40. 40.
    Pan S, Chen L, Li Y, Han S, Wang L, Shao G (2018) Disodium citrate-assisted hydrothermal synthesis of V2O5 nanowires for high performance supercapacitors. RSC Adv 8(6):3213–3217.  https://doi.org/10.1039/c7ra12607g CrossRefGoogle Scholar
  41. 41.
    Li C, Zhang X, Yu P, Zhang H, Sun X, Ma Y (2014) Soft template-assisted synthesis of single crystalline β-cobalt hydroxide with distinct morphologies. CrystEngComm 16(32):7478.  https://doi.org/10.1039/c4ce00164h CrossRefGoogle Scholar
  42. 42.
    Ran F, Yang H, Wu Y, Zhao X, Tan Y, Liu Y, Niu X, Chen Y, Kong L, Kang L (2018) Facile preparation of porous nickel oxide membrane for flexible supercapacitors electrode via phase-separation method of polymer. Mater Res Bull 103:25–31.  https://doi.org/10.1016/j.materresbull.2018.03.004 CrossRefGoogle Scholar
  43. 43.
    Dhole IA, Navale YH, Pawar CS, Navale ST, Patil VB (2018) Physicochemical and supercapacitive properties of electroplated nickel oxide electrode: effect of solution molarity. J Mater Sci Mater Electron 29(7):5675–5687.  https://doi.org/10.1007/s10854-018-8537-y CrossRefGoogle Scholar
  44. 44.
    Yuan C, Li J, Hou L, Yang L, Shen L, Zhang X (2012) Facile growth of hexagonal NiO nanoplatelet arrays assembled by mesoporous nanosheets on Ni foam towards high-performance electrochemical capacitors. Electrochim Acta 78:532–538.  https://doi.org/10.1016/j.electacta.2012.06.044 CrossRefGoogle Scholar
  45. 45.
    Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena KI, Manyala N (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48(19):6707–6712.  https://doi.org/10.1007/s10853-013-7471-x CrossRefGoogle Scholar
  46. 46.
    Xiang D, Liu X, Dong X (2017) A facile synthetic method and electrochemical performances of nickel oxide/carbon fibers composites. J Mater Sci 52(13):7709–7718.  https://doi.org/10.1007/s10853-017-1019-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoshuang Wang
    • 1
  • Ling Chen
    • 1
    Email author
  • Fei Li
    • 1
  • Shuoqing Zhang
    • 1
  • Xiangcheng Chen
    • 1
  • Juanjuan Yin
    • 1
  1. 1.Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoChina

Personalised recommendations