, Volume 25, Issue 3, pp 999–1006 | Cite as

Synthesis of sulfonated graphene/carbon nanotubes/manganese dioxide composite with high electrochemical properties

  • Wei LiEmail author
  • Huizhong Xu
  • Mengjie Cui
  • Jie Zhao
  • Faqian LiuEmail author
  • Tangfeng Liu
Original Paper


Combining MnO2 with conductive carbon materials is an efficient approach to improve the electrical conductivity of MnO2-based electrodes, which could greatly improve the electrochemical performance of supercapacitors. Here, a ternary composite consisting of sulfonated graphene, carbon nanotubes, and manganese dioxide (SG/CNTs/MnO2) has been successfully fabricated by a facile yet efficient method. The electrochemical properties are evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques. The results show a prominent improvement of electrochemical performance of MnO2-based electrodes. For instance, the specific capacitance of SG/CNTs/MnO2 composite is 336.4 F g−1 at the current density of 0.5 A g−1, which is much higher than pure MnO2 (77.1 F g−1) and binary SG/MnO2 (213.0 F g−1). Moreover, SG/CNTs/MnO2 composite shows good cycling stability with 91.3% capacitance retention after 10,000 cycles at a current density of 5 A g−1.


MnO2 Electrical conductivity Sulfonated graphene (SG) Supercapacitors 



FL acknowledges the support from the National Science Foundation of China (21371105), the Scientific Development Plan of Qingdao (14-2-4-41-jch) and the Natural Science Foundation of Shandong Province (ZR2018LB034).


  1. 1.
    Conway BE (1999) M. electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  2. 2.
    Vangari M, Pryor T, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139(2):72–79CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34(11):4889–4899CrossRefGoogle Scholar
  4. 4.
    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62CrossRefGoogle Scholar
  5. 5.
    Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131CrossRefGoogle Scholar
  6. 6.
    Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51(12):2901–2912CrossRefGoogle Scholar
  7. 7.
    González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206CrossRefGoogle Scholar
  8. 8.
    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321(5889):651–652CrossRefGoogle Scholar
  9. 9.
    Zhao X, Sanchez BM, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3(3):839–855CrossRefGoogle Scholar
  10. 10.
    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12CrossRefGoogle Scholar
  11. 11.
    Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48(2):487–493CrossRefGoogle Scholar
  12. 12.
    Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ASC Nano 4:2822–2830CrossRefGoogle Scholar
  13. 13.
    Ko JM, Kim KM (2009) Electrochemical properties of MnO2/activated carbon nanotube composite as an electrode material for supercapacitor. Mater Chem Phys 114(2–3):837–841CrossRefGoogle Scholar
  14. 14.
    Amade R, Jover E, Caglar B, Mutlu T, Bertran E (2011) Optimization of MnO2/vertically aligned carbon nanotube composite for supercapacitor application. J Power Sources 196(13):5779–5783CrossRefGoogle Scholar
  15. 15.
    Zhang G, Ren L, Deng L, Wang J, Kang L, Liu Z-H (2014) Graphene–MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor. Mater Res Bull 49:577–583CrossRefGoogle Scholar
  16. 16.
    Zhou H, Yang X, Lv J, Dang Q, Kang L, Lei Z, Yang Z, Hao Z, Liu Z-H (2015) Graphene/MnO2 hybrid film with high capacitive performance. Electrochim Acta 154:300–307CrossRefGoogle Scholar
  17. 17.
    Zhou W, Han GY, Xiao YM, Chang YZ, Li MY, Zhang YY (2016) Sulfonated graphene synthesized via a green route and its capacitive properties. Chin J Chem 34:98–106CrossRefGoogle Scholar
  18. 18.
    Zhou JY, Zhao H, Mu XM, Chen JY, Zhang P, Wang YL, Zhang ZX, Pan XJ, Xie EQ (2015) Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core–shell nanostructures for high-performance flexible supercapacitors. Nanoscale 7:14697–14706CrossRefGoogle Scholar
  19. 19.
    EunJoo Yoo JK, Hosono E, Zhou H-s, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282CrossRefGoogle Scholar
  20. 20.
    Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9:1949CrossRefGoogle Scholar
  21. 21.
    Xiong CY, Li TH, Dang AL, Zhao TK, Li H, Lv HQ (2016) Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode. J Power Sources 306:602–610CrossRefGoogle Scholar
  22. 22.
    Xu MW, Kong LB, Zhou WJ, Li HL (2007) Hydrothermal synthesis and pseudocapacitance properties of r-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147CrossRefGoogle Scholar
  23. 23.
    Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428CrossRefGoogle Scholar
  24. 24.
    Liu C, Gui D, Liu J (2014) Process dependent graphene-wrapped plate-like MnO2 nanospheres for high performance supercapacitor. Chem Phys Lett 614:123–128CrossRefGoogle Scholar
  25. 25.
    Ma L, Shen X, Ji Z, Zhu G, Zhou H (2014) Ag nanoparticles decorated MnO2/reduced graphene oxide as advanced electrode materials for supercapacitors. Chem Eng J 252:95–103CrossRefGoogle Scholar
  26. 26.
    Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3(43):21380–21423CrossRefGoogle Scholar
  27. 27.
    Pang M, Long G, Jiang S, Ji Y, Han W, Wang B, Liu X, Xi Y (2015) Rapid synthesis of graphene/amorphous α-MnO2 composite with enhanced electrochemical performance for electrochemical capacitor. Mater Sci Eng B 194:41–47CrossRefGoogle Scholar
  28. 28.
    Mishra P, Sharma S, Jain R (2017) Carbon electrodes for bio-electricity generation in microbial fuel cells. J Indian Chem Soc 94:1–8Google Scholar
  29. 29.
    Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H (2016) A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 28(19):3646–3652CrossRefGoogle Scholar
  30. 30.
    Liu Y, He D, Duan J, Wang Y, Li S (2014) Synthesis of MnO2/graphene/carbon nanotube nanostructured ternary composite for supercapacitor electrodes with high rate capability. Mater Chem Phys 147(1–2):141–146CrossRefGoogle Scholar
  31. 31.
    Jiang H, Dai Y, Hu Y, Chen W, Li C (2014) Nanostructured ternary nanocomposite of rGO/CNTs/MnO2 for high-rate supercapacitors. ACS Sustain Chem Eng 2(1):70–74.32CrossRefGoogle Scholar
  32. 32.
    Deng L, Hao Z, Wang J, Zhu G, Kang L, Liu Z-H, Yang Z, Wang Z (2013) Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim Acta 89:191–198CrossRefGoogle Scholar
  33. 33.
    Nguyen VH, Nguyen TT, Jae-Jin S (2015) Rapid one-step synthesis and electrochemical properties of graphene/carbon nanotubes/MnO2 composites. Synth Met 199:276–279CrossRefGoogle Scholar
  34. 34.
    Ramezani M, Fathi M, Mahboubi F (2015) Facile synthesis of ternary MnO2-GNS-CNT composites with high rate capability for supercapacitor application. Electrochim Acta 174:345–355CrossRefGoogle Scholar
  35. 35.
    Mishra P, Jain R (2016) Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells. Int J Hydrog Energy 41:22394–22405CrossRefGoogle Scholar
  36. 36.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of EducationQingdao University of Science and TechnologyQingdaoChina
  2. 2.Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Chinese Academy of SciencesInstitute of OceanologyQingdaoChina

Personalised recommendations