Advertisement

Ionics

, Volume 25, Issue 1, pp 353–360 | Cite as

Hydrothermal synthesis and electrochemical properties of ZnCo2O4 microspheres

  • B. Saravanakumar
  • G. Ravi
  • R. YuvakkumarEmail author
  • V. Ganesh
  • S. Ravichandran
  • M. Thambidurai
  • A. Sakunthala
Short Communication
  • 56 Downloads

Abstract

Zinc cobalt oxide (ZnCo2O4) microspheres are prepared at three different hydrothermal process temperatures (100 °C, 130 °C, and 160 °C) assisted with urea. XRD studies reveal the spinel face-centered cubic (Fd3m) structure of ZnCo2O4 microspheres. The optical and vibrational properties of the product are characterized by photoluminescence and FTIR studies. The strong near-band edge emission peak observed at 392 nm corresponds to the direct recombination of the exciton-exciton collision process for all three synthesized products; SEM analysis reveals the complete growth stage of spherical ZnCo2O4 microspheres at three different temperatures. The electrochemical properties of synthesized ZnCo2O4 microspheres are analyzed by cyclic voltammetry, electroimpedance spectroscopy, and galvanostatic charging and discharging studies. ZnCo2O4 microspheres (SH3–160 °C) exhibit the superior specific capacitance of 500 F/g at 0.75 A/g current density and retain their specific capacitance of 80% at current density 2 A/g. ZnCo2O4 microspheres (SH3–160 °C) may be considered as a good candidate as electrode in supercapacitor applications.

Keywords

Hydrothermal ZnCo2O4 microspheres Supercapacitor applications 

Notes

Funding information

This work was supported by UGC Start-Up Research Grant No. F.30-326/2016 (BSR).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Dubal DP, Holze R (2013) Self-assembly of stacked layers of Mn3O4 nanosheets using a scalable chemical strategy for enhanced, flexible electrochemical energy storage. J Power Sources 238:274–282CrossRefGoogle Scholar
  2. 2.
    Gund GS, Dubal DP, Patil BH, Shinde SS, Lokhande CD (2013) Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim Acta 92:205–215CrossRefGoogle Scholar
  3. 3.
    Xue DF, Chen KF (2015) Searching for electrode materials with high electrochemical reactivity. J Mater 1:170–187Google Scholar
  4. 4.
    Dubal DP, Romero PG, Sankapal BR, Holze R (2015) Nickel cobaltite as an emerging material for supercapacitors: an overview. Nano Energy 11:377–399CrossRefGoogle Scholar
  5. 5.
    Wu Z, Zhu Y, Ji X (2014) NiCo2O4-based materials for electrochemical supercapacitors. J Mater Chem A 2:14759–14772CrossRefGoogle Scholar
  6. 6.
    Pan L, Li L, Chen Y (2013) Synthesis of hexagonal Co3O4 and ag/Co3O4 composite nanosheets and their electrocatalytic performances. J Clust Sci 24:1001–1010CrossRefGoogle Scholar
  7. 7.
    Pan Y, Gao H, Zhang M, Li L, Wang Z (2017) Facile synthesis of ZnCo2O4 micro-flowers and micro-sheets on Ni foam for pseudocapacitor electrodes. J Alloys Compd 702:381–387CrossRefGoogle Scholar
  8. 8.
    Hou X, Bai S, Xue S, Shang X, He D (2017) Wrinkled-paper-like ZnCo2O4 nanoflakes as a superior anode material for ultrahigh-rate lithium-ion batteries. J Alloys Compd 711:592–597CrossRefGoogle Scholar
  9. 9.
    Rajeshkhanna G, Umeshbabu E, Justin P, Ranga Rao G (2017) Spinel ZnCo2O 4 nanosheets as carbon and binder free electrode material for energy storage and electro reduction of H2O2. J Alloys Compd 696:947–955CrossRefGoogle Scholar
  10. 10.
    Song X, Ru Q, Zhang B, Hu S, An B (2014) Flake-by-flake ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 585:518–522CrossRefGoogle Scholar
  11. 11.
    Li S, Qi L, Lu L, Wang H (2013) Carbon spheres-assisted strategy to prepare mesoporous manganese dioxide for supercapacitor applications. J Solid State Chem 197:29–37CrossRefGoogle Scholar
  12. 12.
    Narayanan R (2017) Single step hydrothermal synthesis of carbon nanodot decorated V2O5 nanobelts as hybrid conducting material for supercapacitor application. J Solid State Chem 253:103–112CrossRefGoogle Scholar
  13. 13.
    Mei J, Zhang L (2015) Novel MnOOH–graphene nanocomposites, preparation, characterization and electrochemical properties for supercapacitors. J Solid State Chem 221:178–183CrossRefGoogle Scholar
  14. 14.
    Han D, Jing X, Xu P, Ding Y, Liu J (2014) Facile synthesis of hierarchical hollow ε-MnO2 spheres and their application in supercapacitor electrodes. J Solid State Chem 218:178–183CrossRefGoogle Scholar
  15. 15.
    Han D, Xu P, Jing X, Wang J, Song D, Liu J, Zhang M (2013) Facile approach to prepare hollow core–shell NiO microspherers for supercapacitor electrodes. J Solid State Chem 203:60–67CrossRefGoogle Scholar
  16. 16.
    Zhu J, Jiang J, Liu J, Ding R, Ding H, Feng Y, Wei G, Huang X (2011) Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application. J Solid State Chem 184:578–583CrossRefGoogle Scholar
  17. 17.
    Zhang N, Qi P, Ding YH, Huang CJ, Zhang JY, Fang YZ (2016) A novel reduction synthesis of the graphene/Mn3O4 nanocomposite for supercapacitors. J Solid State Chem. 237:378–384CrossRefGoogle Scholar
  18. 18.
    Zhang J, Wang Y, Qin Y, Yu C, Cui L, Shu X, Cui J, Zheng H, Zhang Y, Wu Y (2017) A facile one-step synthesis of Mn3O4 nanoparticles-decorated TiO2 nanotube arrays as high performance electrode for supercapacitors. J Solid State Chem. 246:269–277CrossRefGoogle Scholar
  19. 19.
    Feng J, Zhao J, Tang B, Liu P, Xu J (2010) The electrochemical performance of ordered mesoporous carbon/nickel compounds composite material for supercapacitor. J Solid State Chem 183:2932–2936CrossRefGoogle Scholar
  20. 20.
    Malak-Polaczyk A, Matei-Ghimbeu C, Vix-Guterl C, Frackowiak E (2010) Carbon/λ-MnO2 composites for supercapacitor electrodes. J Solid State Chem 183:969–974Google Scholar
  21. 21.
    Li Z, Su Y, Yun G, Shi K, Lv X, Yang B (2014) Binder free synthesis of MnO2 nanoplates/graphene composites with enhanced supercapacitive properties. Solid State Commun 192:82–88CrossRefGoogle Scholar
  22. 22.
    Wang Y, Yang Y, Yang Y, Shao H (2010) Enhanced electrochemical performance of unique morphological cathode material prepared by solvothermal method. Solid State Commun 150:81–85CrossRefGoogle Scholar
  23. 23.
    Chen X, Li X, Jiang Y, Shi C, Li X (2005) Rational synthesis of α-MnO2 and γ-Mn2O3 nanowires with the electrochemical characterization of α-MnO2 nanowires for supercapacitor. Solid State Commun 136:94–96CrossRefGoogle Scholar
  24. 24.
    Qiu Y, Yang S, Deng H, Jinb L, Li W (2010) A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J Mater Chem 20:4439–4444CrossRefGoogle Scholar
  25. 25.
    Gao S, Fan B, Feng R, Ye C, Wei X, Liu J, Bu X (2017) N-doped-carbon-coated Fe3O4 from metal-organic framework as efficient electro catalyst for ORR. Nano Energy 40:462–−470CrossRefGoogle Scholar
  26. 26.
    Gao S, Geng K (2014) Facile construction of Mn3O4 nanorods coated by a layer of nitrogen-doped carbon with high activity for oxygen reduction reaction. Nano Energy 6:44–50CrossRefGoogle Scholar
  27. 27.
    Bai J, Li XG, Liu GZ, Qian YT, Xiong SL (2014) Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultra long-life lithium-ion battery anode material. Adv Funct Mater 24:3012–3020CrossRefGoogle Scholar
  28. 28.
    Lu L, Xu S, Luo Z, Wang S, Li G, Feng C (2016) Synthesis of ZnCo2O4 microspheres with Zn0.33Co0.67CO3 precursor and their electrochemical performance. J Nanopart. Res. 18:183–194CrossRefGoogle Scholar
  29. 29.
    Zheng H, Xu S, Li L, Feng C, Wang S (2016) Synthesis of NiCo2O4 micro ellipsoids as anode material for lithium-ion batteries. J Electron Mater 45:4966–4972CrossRefGoogle Scholar
  30. 30.
    Fu JX, Wong WT, Liu WR (2015) Temperature effects on a nano-porous ZnCo2O4 anode with excellent capability for Li-ion batteries. RSC Adv 5:75838–75845CrossRefGoogle Scholar
  31. 31.
    Karthikeyan K, Kalpana D, Renganathan NG (2009) Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 15:107–110CrossRefGoogle Scholar
  32. 32.
    Kim TW, Woo MA, Regis M, Choi KS (2014) Electrochemical synthesis of spinel type ZnCo2O4 electrodes for use as oxygen evolution reaction catalysts. J Phys Chem Lett 5:2370–2374CrossRefGoogle Scholar
  33. 33.
    Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011CrossRefGoogle Scholar
  34. 34.
    Guan B, Guo D, Hu L, Zhang G, Fu T, Ren W, Li J, Li Q (2014) Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. J Mater Chem A 2:16116–16123CrossRefGoogle Scholar
  35. 35.
    Liu B, Liu B, Wang Q, Wang X, Xiang Q, Chen D, Shen G (2013) New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10011–10017CrossRefGoogle Scholar
  36. 36.
    Bao F, Wang X, Zhao X, Wang Y, Ji Y, Zhang H, Liu X (2014) Controlled growth of mesoporous ZnCo2O4 nanosheet arrays on Ni foam as high-rate electrodes for supercapacitors. RSC Adv 4:2393–2397CrossRefGoogle Scholar
  37. 37.
    Wua C, Cai J, Zhang Q, Zhou X, Zhu Y, Li L, Shen P, Zhang K (2015) Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochim Acta 169:202–209CrossRefGoogle Scholar
  38. 38.
    Huang Y, Miao Y, Lu H, Liu T (2015) Hierarchical ZnCo2O4@ NiCo2O4 Core–sheath nanowires: bifunctionality towards high-performance supercapacitors and the oxygen-reduction reaction. Chem Eur J 21:10100–10108CrossRefGoogle Scholar
  39. 39.
    Guo L, Ji Y, Xu H, Wu Z, Simon P (2003) Synthesis and evolution of rod-like nano-scaled ZnC2O4· 2H2O whiskers to ZnO nanoparticles. J Mater Chem 13:754–757CrossRefGoogle Scholar
  40. 40.
    Giri AK, Pal P, Ananthakumar R, Jayachandran M, Mahanty S, Panda AB (2014) 3D hierarchically assembled porous wrinkled-paper-like structure of ZnCo2O4 and co-ZnO@C as anode materials for lithium-ion batteries. Cryst Growth Des 14:3352–3359CrossRefGoogle Scholar
  41. 41.
    Huang T, Zhao C, Zheng R, Zhang Y, Hu Z (2015) Facilely synthesized porous ZnCo2O4 rod like nanostructure for high-rate supercapacitors. Ionics 21:3109–3115CrossRefGoogle Scholar
  42. 42.
    Xie Q, Li F, Guo H, Wang L, Chen Y, Yue GH, Peng DL (2013) Template-free synthesis of amorphous double-shelled zinc–cobalt citrate hollow microspheres and their transformation to crystalline ZnCo2O4 microspheres. ACS Appl Mater Interfaces 5:5508–5517CrossRefGoogle Scholar
  43. 43.
    Mercado CC, Zakutayev A, Zhu K, Flynn CJ, Cahoon JF, Nozik AJ (2014) Sensitized zinc–cobalt–oxide spinel p-type photoelectrode. J Phys Chem C 118:25340–25349CrossRefGoogle Scholar
  44. 44.
    Guo H, Chen J, Weng W, Wang Q, Li S (2014) Facile template-free one-pot fabrication of ZnCo2O4 microspheres with enhanced photo catalytic activities under visible-light illumination. Chem Eng J 239:192–199CrossRefGoogle Scholar
  45. 45.
    Saravanakumar B, Muthu Lakshmi S, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2017) Electrochemical properties of rice-like copper manganese oxide (CuMn2O4) nanoparticles for pseudocapacitor applications. J Alloys Compd 723:115–122CrossRefGoogle Scholar
  46. 46.
    Saravanakumar B, Priyadharshini T, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2017) Hydrothermal synthesis of spherical NiCo2O4 nanoparticles as a positive electrode for pseudocapacitor applications. J Sol-Gel Sci Technol 84:297–305CrossRefGoogle Scholar
  47. 47.
    Saravanakumar B, Ramachandran SP, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2017) Morphology dependent electrochemical capacitor performance of NiMoO4 nanoparticles. Mater Lett 209:1–4CrossRefGoogle Scholar
  48. 48.
    Ramachandran SP, Saravanakumar B, Ganesh V, Ravi G, Sakunthala A, Yuvakkumar R (2017) Hexamine, PEG-400 effect on α-MoO3 nanoparticle synthesis for pseudo capacitance applications. J Mater Sci Mater Electron 28:13780–13786CrossRefGoogle Scholar
  49. 49.
    Priyadharshini T, Saravanakumar B, Ravi G, Sakunthala A, Yuvakkumar R (2017) Hexamine role on pseudocapacitive behaviour of cobalt oxide (Co3O4) nanopowders. J Nanosci Nanotechnol 17:1–7CrossRefGoogle Scholar
  50. 50.
    Qiao C, Zhang Y, Zhu Y, Cao C, Bao X, Xu J (2015) One-step synthesis of zinc–cobalt layered double hydroxide (Zn–Co-LDH) nanosheets for high-efficiency oxygen evolution reaction. J Mater Chem A 3:6878–6883CrossRefGoogle Scholar
  51. 51.
    Gai Y, Shang Y, Gong L, Su L, Hao L, Dong F, Li J (2017) A self-template synthesis of porous ZnCo2O4 microspheres for high-performance quasi-solid-state asymmetric supercapacitors. RSC Adv 7:1038–1044CrossRefGoogle Scholar
  52. 52.
    Silambarasan M, Padmanathan N, Ramesh PS, Geetha D (2016) Spinel CuCo2O4 nanoparticles: facile one-step synthesis, optical, and electrochemical properties, mater. Res Express 3:95021–95030CrossRefGoogle Scholar
  53. 53.
    Chen T, Fan Y, Wang G, Yang Q, Yang R (2015) Rationally designed hierarchical ZnCo2O4/polypyrrole nanostructures for high-performance supercapacitor electrodes. RSC Adv 5:74523–74530CrossRefGoogle Scholar
  54. 54.
    Ma X, Kong L, Zhang W, Liu M, Luo Y, Kang L (2014) Facile fabrication and perfect cycle stability of 3D NiO@ CoMoO4 nanocomposite on Ni foam for supercapacitors. RSC Adv 4:17884–17890CrossRefGoogle Scholar
  55. 55.
    Vijayakumar S, Lee SH, Ryu KS (2015) Synthesis of Zn3V2O8 nanoplatelets for lithium-ion battery and supercapacitor applications. RSC Adv 5:91822–91828CrossRefGoogle Scholar
  56. 56.
    Dong S, Dao AQ, Zheng B, Tan Z, Fu C, Liu H, Xiao F (2015) One-step electrochemical synthesis of three-dimensional graphene foam loaded nickel–cobalt hydroxides nanoflakes and its electrochemical properties. Electrochim Acta 152:195–201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. Saravanakumar
    • 1
  • G. Ravi
    • 1
  • R. Yuvakkumar
    • 1
    Email author
  • V. Ganesh
    • 2
  • S. Ravichandran
    • 3
  • M. Thambidurai
    • 4
  • A. Sakunthala
    • 5
  1. 1.Nanomaterials Laboratory, Department of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Electrodics and Electrocatalysis (EEC) DivisionCSIR–Central Electrochemical Research Institute (CSIR–CECRI)KaraikudiIndia
  3. 3.Electro Inorganic DivisionCSIR–Central Electrochemical Research Institute (CSIR–CECRI)KaraikudiIndia
  4. 4.Luminous! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical & Electronic Engineering, The Photonics Institute (TPI)Nanyang Technological UniversitySingaporeSingapore
  5. 5.Department of Physics, School of Science and HumanitiesKarunya Institute of Technology and SciencesCoimbatoreIndia

Personalised recommendations