Advertisement

Ionics

, Volume 25, Issue 2, pp 437–445 | Cite as

MoO2/C hollow nanospheres synthesized by solvothermal method as anode material for lithium-ion batteries

  • Xiaofeng Wang
  • Yajing Liu
  • Jing Zeng
  • Chaoqun Peng
  • Richu WangEmail author
Original Paper
  • 51 Downloads

Abstract

Adjusting particle size and applying carbon materials as coating layer are promising methods to modify electrode materials and improve the electrochemical performance of lithium-ion batteries. Herein, hollow molybdenum dioxide carbon nanocomposite (MoO2/C) with a diameter of about 150–200 nm was synthesized by a simple solvothermal method–assisted annealing process by using glucose as carbon source and cetyltrimethylammonium bromide (CTAB) as the soft template. The synthesized MoO2/C hollow nanospheres are composed of a number of nanoparticles that are in size of around 20–30 nm and covered by a carbon layer. Coin cells were assembled, and a series of electrochemical measurements indicated that the MoO2/C exhibits good electrochemical performance, high discharge specific capacities of 988.6 mAhg−1 at 100 mAg−1 after 40 cycles and 784.5 mAhg−1 at 500 mAg−1 after 100 cycles are achieved. The excellent electrochemical performance is connected with the combination of nanocrystallization, hollow structural design, and the carbon coating.

Keywords

Lithium-ion batteries Solvothermal Nanocomposite MoO2/C Hollow nanospheres 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yang X, Li Q, Wang HJ, Feng J, Zhang M, Yuan R, Chai YQ (2018) In-situ carbonization for template-free synthesis of MoO2-Mo2C-C microspheres as high-performance lithium battery anode. Chem Eng J 337:74–81CrossRefGoogle Scholar
  2. 2.
    Xia Q, Zhao HL, Du ZH, Zeng ZP, Gao CH, Zhang ZJ, Du XF, Kulka A, Świerczek K (2015) Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries. Electrochim Acta 180:947–956CrossRefGoogle Scholar
  3. 3.
    Zhu J, Li Y, Hu G (2018) Large-scale synthesis of SnS/carbon nanotube composites with enhanced reversible lithium-ion storage. Ionics 2018:1–5Google Scholar
  4. 4.
    Kim Y, Drews A, Chandrasekaran R, Miller T, Sakamoto J (2018) Improving Li-ion battery charge rate acceptance through highly ordered hierarchical electrode design. Ionics 2018:1–9Google Scholar
  5. 5.
    Fang X, Guo B, Shi Y, Li B, Hua C, Yao C, Zhang Y, Hu YS, Wang Z, Stucky GD, Chen L (2012) Enhanced Li storage performance of ordered mesoporous MoO2 via tungsten doping. Nanoscale 4(5):1541–1544CrossRefGoogle Scholar
  6. 6.
    Li S, Liu Y, Guo P, Wang C (2017) Self-climbed amorphous carbon nanotubes filled with transition metal oxide nanoparticles for large rate and long lifespan anode materials in lithium ion batteries. ACS Appl Mater Interfaces 9(32):26818–26815CrossRefGoogle Scholar
  7. 7.
    Sun Q, Wang ZJ, Zhang ZJ, Yu Q, Qu Y, Zhang JY, Yu Y, Xiang B (2016) Rational design of graphene reinforced MnO nanowires with enhanced electrochemical performance for Li-ion batteries. ACS Appl Mater Interfaces 8(10):6303–6308CrossRefGoogle Scholar
  8. 8.
    Liu X, Ji W, Liang J, Peng L, Hou W (2014) MoO2@carbon hollow microspheres with tunable interiors and improved lithium-ion battery anode properties. Phys Chem Chem Phys 16(38):20570–20577CrossRefGoogle Scholar
  9. 9.
    Li S (2018) Hierarchical MoO2/rGO composite as a high-performance anode material for lithium-ion batteries. Int J Electrochem Sci 13:23–28CrossRefGoogle Scholar
  10. 10.
    Guo L, Wang Y (2015) Standing carbon-coated molybdenum dioxide nanosheets on graphene: morphology evolution and lithium ion storage properties. J Mater Chem 3(8):4706–4715CrossRefGoogle Scholar
  11. 11.
    Wang Y, Huang Z, Wang YJ (2015) A new approach to synthesize MoO2@C for high-rate lithium ion batteries. J Mater Chem 3(42):21314–21320CrossRefGoogle Scholar
  12. 12.
    Hu XL, Zhang W, Liu XX, Mei YN, Huang YH (2015) ChemInform abstract: nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 44(8):2376–2404CrossRefGoogle Scholar
  13. 13.
    He WJ, Zhang LF, Ling M, Shen KC, Liu Y, Guo SW (2018) A self-transition strategy toward nanostructured Cu-MoO2/rGO composite as anodes for lithium-ion batteries with high initial coulombic efficiency and cycle stability. J Electrochem Soc 165(2):A355–A360CrossRefGoogle Scholar
  14. 14.
    Zhang KX, Yang HX, Lü MF, Yan C, Wu HP, Yuan AH, Lin SL (2017) Porous MoO2-Cu/C/graphene nano-octahedrons quadruple nanocomposites as an advanced anode for lithium ion batteries with enhanced rate capability. J Alloys Compd 731:646–654CrossRefGoogle Scholar
  15. 15.
    Valdez A, Zuniga L, Alcoutlabi M (2018) MoS2 and MoO2 loaded carbon microfibers as anode materials for lithium-ion and sodium-ion batteries. J Electrochem Soc 3:556–556Google Scholar
  16. 16.
    Ni JF, Zhao Y, Li L, Mai LQ (2015) Ultrathin MoO2, nanosheets for superior lithium storage. Nano Energy 11:129–135CrossRefGoogle Scholar
  17. 17.
    He H, Man Y, Yang J, Xie J, Xu M (2017) MoO2 nanosheets embedded in amorphous carbon matrix for sodium-ion batteries. Roy Soc Open Sci 4(10):170892CrossRefGoogle Scholar
  18. 18.
    Sun Y, Hu X, Luo W, Huang Y (2012) Ultrafine MoO2 nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries. J Mater Chem 22(2):425–431CrossRefGoogle Scholar
  19. 19.
    Zhou E, Wang CG, Shao MH, Deng XL, Xu XJ (2017) MoO2 nanoparticles grown on carbon fibers as anode materials for lithium-ion batteries. Ceram Int 43(1):760–765CrossRefGoogle Scholar
  20. 20.
    Gao QS, Yang LC, Lu XC, Mao JJ, Zhang YH, Wu YP, Tang Y (2010) Synthesis, characterization and lithium-storage performance of MoO2/carbon hybrid nanowires. J Mater Chem 20(14):2807–2812CrossRefGoogle Scholar
  21. 21.
    Qi YY, Zhou J, Yang X, Chen W, Zhuo RH (2015) Growth mechanism of MoO2 nanorods by hydrothermal process. J Funct Mater 46(8):08076–08080Google Scholar
  22. 22.
    Liu X, Wu D, Ji W, Hou W (2014) Uniform MoO2@carbon hollow nanospheres with superior lithium-ion storage properties. J Mater Chem A 3(3):968–972CrossRefGoogle Scholar
  23. 23.
    Liu ZM, Yu XY, Paik U (2016) Etching-in-a-box: a novel strategy to synthesize unique yolk-shelled Fe3O4@carbon with an ultralong cycling life for lithium storage. Adv Energy Mater 6(6):1502318Google Scholar
  24. 24.
    Li D, Wang HQ, Liu HK, Guo ZP (2016) A new strategy for achieving a high performance anode for lithium ion batteries—encapsulating germanium nanoparticles in carbon nanoboxes. Adv Energy Mater 6(5):1501666CrossRefGoogle Scholar
  25. 25.
    Xia GL, Liu D, Zheng FC, Yang Y, Su JW, Chen QW (2016) Preparation of porous MoO2@C nano-octahedrons from a polyoxometalate-based metal-organic framework for highly reversible lithium storage. J Mater Chem A 4(32):12434–12441CrossRefGoogle Scholar
  26. 26.
    Ji L, Lin Z, Guo B, Medford AJ, Zhang X (2010) Assembly of carbon-SnO2 core-sheath composite nanofibers for superior lithium storage. Chem Eur J 16(38):11543–11548CrossRefGoogle Scholar
  27. 27.
    Wu H, Zheng GY, Liu N, Carney TJ, Yang Y, Cui Y (2012) Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett 12(2):904–909CrossRefGoogle Scholar
  28. 28.
    Li WY, Zheng GY, Yang Y, Seh ZW, Liu N, Cui Y (2013) High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc Natl Acad Sci U S A 110(18):7148–7153CrossRefGoogle Scholar
  29. 29.
    Xu H, Wang W (2007) Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew Chem 119(9):1511–1514CrossRefGoogle Scholar
  30. 30.
    Wang PX, Zhang Y, Yin YY, Fan LS, Zhang NQ, Sun KN (2017) Anchoring hollow MoO2 spheres on graphene for superior lithium storage. Chem Eng J 334:257–263CrossRefGoogle Scholar
  31. 31.
    Wang Z, Chen JS, Zhu T, Madhavi S, Lou XW (2010) ChemInform abstract: one-pot synthesis of uniform carbon-coated MoO2, nanospheres for high-rate reversible lithium storage. Chem Commun 41(50):6906–6908CrossRefGoogle Scholar
  32. 32.
    Ku JH, Jung YS, Lee KT, Kim CH, Oh SM (2014) Thermoelectrochemically activated MoO2 powder electrode for lithium secondary batteries. J Electrochem Soc 156(8):A688–A693CrossRefGoogle Scholar
  33. 33.
    Koziej D, Rossell MD, Ludi B, Hintennach A, Novák P, Grunwaldt JD, Niederberger M (2011) Interplay between size and crystal structure of molybdenum dioxide nanoparticles—synthesis, growth mechanism, and electrochemical performance. Small 7(3):377–387CrossRefGoogle Scholar
  34. 34.
    Li XY, Xiao QG, Gao YY, Zhang HL, Xu HB, Zhang Y (2017) Hierarchical MoO2/C microspheres: preparation and application as anode materials for lithium ion batteries. J Alloys Compd 723:1113–1120CrossRefGoogle Scholar
  35. 35.
    Liu B, Zhao X, Tian Y, Zhao D, Hu C, Cao M (2013) A simple reduction process to synthesize MoO2/C composites with cage-like structure for high-performance lithium-ion batteries. Phys Chem Chem Phys 15(22):8831–8837CrossRefGoogle Scholar
  36. 36.
    Yang L, Liu L, Zhu Y, Wang X, Wu Y (2012) Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries. J Mater Chem 22(26):13148–13152CrossRefGoogle Scholar
  37. 37.
    Xu Y, Yi R, Yuan B, Wu X, Dunwell M, Lin Q, Fei L, Deng S, Andersen P, Wang D, Luo H (2012) High capacity MoO2/graphite oxide composite anode for lithium-ion batteries. J Phys Chem Lett 3(3):309–314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaofeng Wang
    • 1
  • Yajing Liu
    • 1
  • Jing Zeng
    • 1
  • Chaoqun Peng
    • 1
  • Richu Wang
    • 1
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Shenzhen Research Institute of Central South UniversityShenzhenChina

Personalised recommendations