Advertisement

Ionics

, Volume 25, Issue 6, pp 2711–2717 | Cite as

Ordering and diffusion in liquid magnesium antimonide (Mg3Sb2) from hypernetted-chain theory and molecular dynamics simulation

  • Ünsal Akdere
  • Seçkin D. GünayEmail author
  • Çetin Taşseven
Original Paper
  • 51 Downloads

Abstract

The static structure and ionic transport in molten Mg3Sb2 was investigated by means of the hypernetted-chain theory of liquids (HNC) and the molecular dynamics simulation (MD) using a semi-empirical pairwise potential together with the liquid-state density that was estimated from the procedure of finding minimum energy. Magnesium sublattice melts into a more disordered liquid state with a higher mobility compared to antimony. Highly mobile magnesium ions indicate the cluster distribution over a range. Tendency of the pre-peak at low k region (k ≅ 1.7Å-1) in the pair structure factor SNN(k) may be the result of the one of the n-fold Voronoi coordination polyhedral clusters that dominates over the other clusters. The results also suggest that the pair structure factor of the less mobile ion influences the low- k peak in SNN(k) that might be a characteristic feature of the systems whose components have markedly different self-ionic diffusion.

Keywords

Liquid Magnesium antimonide Structure Diffusion 

Supplementary material

11581_2018_2757_Fig5_ESM.png (83 kb)
ESM 1

(PNG 83 kb)

11581_2018_2757_MOESM1_ESM.tif (70 kb)
High resolution image (TIF 70 kb)
11581_2018_2757_Fig6_ESM.png (77 kb)
ESM 2

(PNG 77 kb)

11581_2018_2757_MOESM2_ESM.tif (67 kb)
High resolution image (TIF 66 kb)
11581_2018_2757_Fig7_ESM.png (93 kb)
ESM 3

(PNG 92 kb)

11581_2018_2757_MOESM3_ESM.tif (79 kb)
High resolution image (TIF 79 kb)
11581_2018_2757_Fig8_ESM.png (89 kb)
ESM 4

(PNG 89 kb)

11581_2018_2757_MOESM4_ESM.tif (75 kb)
High resolution image (TIF 74 kb)

References

  1. 1.
    Barriga SA (2013) An electrochemical investigation of the chemical diffusivity in liquid metal alloys. Dissertation, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  2. 2.
    Condron CL, Kauzlarich SM, Gascoin F, Snyder GJ (2006) Thermoelectric properties and microstructure of Mg3Sb2. J Solid State Chem 179(8):2252–2257.  https://doi.org/10.1016/j.jssc.2006.01.034 CrossRefGoogle Scholar
  3. 3.
    Zhang KX, Qin XY, Xin HX, Li HJ, Zhang J (2009) Transport and thermoelectric properties of nanocrystal substitutional semiconductor alloys (Mg1-xCdx)3Sb2 doped with Ag. J Alloys Compd 484(1–2):498–504.  https://doi.org/10.1016/j.jallcom.2009.04.130 Google Scholar
  4. 4.
    Xin HX, Qin XY, Jia JH, Song CJ, Zhang KX, Zhang J (2009) Thermoelectric properties of nanocrystalline (Mg1-xZnx)3Sb2 isostructural solid solutions fabricated by mechanical alloying. J Phys D Appl Phys 42(16):165403–165412.  https://doi.org/10.1088/0022-3727/42/16/165403 CrossRefGoogle Scholar
  5. 5.
    Bradwell DJ, Kim H, Sirk AHC, Sadoway DR (2012) Magnesium-antimony liquid metal battery for stationary energy storage. J Am Chem Soc 134(4):1895–1897.  https://doi.org/10.1021/ja209759s CrossRefGoogle Scholar
  6. 6.
    Tani J, Takahashi M, Kido H (2010) Lattice dynamics and elastic properties of Mg3As2 and Mg3Sb2 compounds from first-principles calculations. Phys B Condens Matter 405(19):4219–4225.  https://doi.org/10.1016/j.physb.2010.07.014 CrossRefGoogle Scholar
  7. 7.
    Imai Y, Watanabe A (2006) Electronic structures of Mg3Pn2 (Pn=N, P, As, Sb and Bi) and Ca3N2 calculated by a first-principle pseudopotential method. J Mater Sci 41(8):2435–2441.  https://doi.org/10.1007/s10853-006-5181-3 CrossRefGoogle Scholar
  8. 8.
    Ganeshan S, Shang SL, Zhang H, Wang Y, Mantina M, Liu ZK (2009) Elastic constants of binary Mg compounds from first-principles calculations. Intermetallics 17(5):313–318.  https://doi.org/10.1016/j.intermet.2008.11.005 CrossRefGoogle Scholar
  9. 9.
    Zhou DW, Liu JS, Xu SH, Peng P (2010) Thermal stability and elastic properties of Mg3Sb2 and Mg3Bi2 phases from first-principles calculations. Phys B Condens Matter 405(13):2863–2868.  https://doi.org/10.1016/j.physb.2010.04.013 CrossRefGoogle Scholar
  10. 10.
    Günay SD (2016) Calculations of thermophysical properties of magnesium antimonide (α-Mg3Sb2). Turk J Phys 40(3):264–269.  https://doi.org/10.3906/fiz-1601-15 CrossRefGoogle Scholar
  11. 11.
    Hansen JP, McDonald IR (1986) The theory of simple liquids. Academic, New YorkGoogle Scholar
  12. 12.
    Gillan MJ (1979) A new method of solving the liquid structure integral equations. Mol Phys 38(6):1781–1794.  https://doi.org/10.1080/00268977900102861 CrossRefGoogle Scholar
  13. 13.
    Abernethy GM, Gillan MJ (1980) A new method of solving the HNC equation for ionic liquids. Mol Phys 39(4):839–847.  https://doi.org/10.1080/00268978000100721 CrossRefGoogle Scholar
  14. 14.
    Refson K (2000) A portable molecular dynamics simulation program for serial and parallel computers. Comput Phys Commun 126(3):310–329.  https://doi.org/10.1016/S0010-4655(99)00496-8 CrossRefGoogle Scholar
  15. 15.
    Fumi FG, Tosi MP (1964) Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I: the Huggins-Mayer and Pauling forms. J Phys Chem Solids 25(1):31–43.  https://doi.org/10.1016/0022-3697(64)90159-3 CrossRefGoogle Scholar
  16. 16.
    Gale JD, Rohl AL (2003) The general utility lattice program (GULP). Mol Simul 29(5):291–341.  https://doi.org/10.1080/0892702031000104887 CrossRefGoogle Scholar
  17. 17.
    Martinez-Ripoll M, Haase A, Brauer G (1974) The crystal structure of α-Mg3Sb2. Acta Crystallogr B 30:2006–2009.  https://doi.org/10.1107/S0567740874006285 CrossRefGoogle Scholar
  18. 18.
    Waseda Y (1980) The structure of non crystalline materials: liquids and amorphous solids. McGraw-Hill, LondonGoogle Scholar
  19. 19.
    Benmore CJ, Skinner LB, Lee B, Weber JKR, Parise JB, Williamson M (2016) Topological ordering in liquid UO2. J Phys Condens Matter 28(1):015102–015107.  https://doi.org/10.1088/0953-8984/28/1/015102 CrossRefGoogle Scholar
  20. 20.
    Hawlitzky M, Horbach J, Binder K (2004) Computer simulations of SiO 2 and GeO 2. In: Attinger S, Koumoutsakos P (eds) Multiscale Modelling and Simulation, Lecture Notes in Computational Science and Engineering, vol 39. Springer, Berlin, pp 187–193CrossRefGoogle Scholar
  21. 21.
    Kim H, Boysen DA, Newhouse JM, Spatocco BL, Chung B, Burke PJ, Bradwell DJ, Jiang K, Tomaszowska AA, Wang K, Wei W, Ortiz LA, Barriga SA, Poizeau SM, Sadoway DR (2013) Liquid metal batteries: past, present, and future. Chem Rev 113(3):2075–2099.  https://doi.org/10.1021/cr300205k CrossRefGoogle Scholar
  22. 22.
    Kittel C (2005) Introduction to solid state physics. Wiley, HobokenGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ünsal Akdere
    • 1
  • Seçkin D. Günay
    • 1
    Email author
  • Çetin Taşseven
    • 1
  1. 1.Department of Physics, Faculty of ScienceYıldız Technical UniversityİstanbulTurkey

Personalised recommendations