Advertisement

Ionics

pp 1–9 | Cite as

Investigation of voltammetric behavior of 4-nitroaniline based on electrodeposition of silver particles onto graphite electrode

  • F. Laghrib
  • N. Ajermoun
  • A. Hrioua
  • S. Lahrich
  • A. Farahi
  • A. El Haimouti
  • M. Bakasse
  • M. A. El Mhammedi
Original Paper

Abstract

Electrochemical modification of carbon-paste electrode (CPEs) by silver particles and its applicability for electroanalytical determination of 4-nitroaniline (4-NA) were reported in this study. Electrochemical surface modification was performed by cyclic voltammetry within the range from 600 to − 400 mV in solution containing 0.5 mmol L−1 AgNO3 dissolved in 0.1 mol L−1 of KNO3 at the scan rate of 10 mV s−1 by applying 1.5 cycles (six segments). Silver particles deposited onto surface of carbon-paste electrode (Ag-CPE) were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The proposed catalyst exhibits remarkably an electro-catalytic performance toward 4-nitroaniline reduction. The catalytic peak current obtained by differential pulse voltammetry (DPV) was linearly dependent on the 4-NA concentration over the range of 8.0 × 10−8 to 1.0 × 10−4 mol L−1 with a detection limit of 4.18 × 10−8 mol L−1. The proposed sensor was successfully applied for 4-nitroaniline determination in drinking water samples.

Keywords

4-nitroaniline Silver particles Electrodeposition Carbon-paste electrodes Electrocatalysis 

References

  1. 1.
    Khan F, Pandey J, Vikram S, Pal D, Cameotra SS (2013) Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp.strain FK48. J Hazard Mater 254–255:72–78CrossRefGoogle Scholar
  2. 2.
    Sun JH, Sun SP, Fan MH, Guo HQ, Qiao LP, Sun RX (2007) A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. J Hazard Mater 148:172–177CrossRefGoogle Scholar
  3. 3.
    Smith SR, Riddell-Black D (2007) Sources and impacts of past, current and future contamination of soil, in research project final report for defra project code SP 0547. Imperial College London:1–247Google Scholar
  4. 4.
    Smith SR (2009) Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling. Philos Trans A Math Phys Eng Sci 367:4005–4041CrossRefGoogle Scholar
  5. 5.
    Haderlein SB, Weissmahr KW, Schwarszenbach RP (1996) Specific adsorption of nitroaromatic explosives and pesticides to clay minerals. Environ Sci Technol 30:612–622CrossRefGoogle Scholar
  6. 6.
    Khalid A, Arshad M, Crowley DE (2009) Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroaniline from textile dye wastewater. Water Res 43:1110–1116CrossRefGoogle Scholar
  7. 7.
    Kutty R, Purohit HJ, Khanna P (2000) Isolation and characterization of a Pseudomonas sp. strain PH1 utilizing meta-aminophenol. Can J Microbiol 46:211–217CrossRefGoogle Scholar
  8. 8.
    Saupe A (1999) High-rate biodegradation of 3 and 4-nitroaniline. Chemosphere 39:2325–2346CrossRefGoogle Scholar
  9. 9.
    Bhunia F, Saha NC, Kaviraj A (2003) Effects of aniline-an aromatic amine to some fresh water organisms. Ecotoxicology 12:397–404CrossRefGoogle Scholar
  10. 10.
    Chung KT, Chen SC, Zhu YY, Wong TY, Stevens SE (1997) Toxic effects of some benzamines on the growth of Azotobacter vinelandii and other bacteria. Environ Toxicol Chem 16:1366–1369CrossRefGoogle Scholar
  11. 11.
    Nair RS, Auletta CS, Schroeder RE, Johannsen FR (1990) Chronic toxicity, oncogenic potential, and reproductive toxicity of p-nitroaniline in rats. Fundam Appl Toxicol 15:607–621CrossRefGoogle Scholar
  12. 12.
    Wang G, Zhang X, Yao C, Tian M (2010) Four-week oral toxicity study of three metabolites of nitrobenzene in rats. Drug Chem Toxicol 33:238–243CrossRefGoogle Scholar
  13. 13.
    Laghrib F, Boumya W, Lahrich S, Farahi A, El Haimouti A, El Mhammedi MA (2017) Electrochemical evaluation of catalytic effect of silver in reducing 4-nitroaniline: analytical application. J Electroanal Chem 807:82–87CrossRefGoogle Scholar
  14. 14.
    Hu S, Xu C, Wang G, Cui D (2001) Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 54:115–123CrossRefGoogle Scholar
  15. 15.
    Yosypchuk O, Karásek J, Vyskočil V, Barek J, Pecková K (2012) The use of silver solid amalgam electrodes for voltammetric and amperometric determination of nitrated polyaromatic compounds used as markers of incomplete combustion. Sci World J 2012:1–12.  https://doi.org/10.1100/2012/231986 CrossRefGoogle Scholar
  16. 16.
    Vyskočil V, Barek J (2011) Electroanalysis of nitro and amino derivatives of polycyclic aromatic hydrocarbons. Curr Org Chem 15:3059–3076CrossRefGoogle Scholar
  17. 17.
    Yosypchuk O, Barek J, Vyskočil V (2012) Voltammetric determination of carcinogenic derivatives of pyrene using a boron-doped diamond film electrode. Anal Lett 45:449–459CrossRefGoogle Scholar
  18. 18.
    Wang H, Zhang A, Cui H, Liu D, Liu R (1998) Adsorptive stripping voltammetric determination of phenol at an electrochemically pretreated carbon-paste electrode with solid paraffin as a binder. Microchem J 59:448–456CrossRefGoogle Scholar
  19. 19.
    Kalcher K, Kauffmann JM, Wang J, Svancara I, Vytras K, Neuhold C, Yang Z (1995) Sensors based on carbon paste in electrochemical analysis: a review with particular emphasis on the period 1990–1993. Electroanalysis 7:5–22CrossRefGoogle Scholar
  20. 20.
    Li J, Liu S, Mao X, Gao P, Yan Z (2004) Trace determination of rare earths by adsorption voltammetry at a carbon paste electrode. J Electroanal Chem 561:137–142CrossRefGoogle Scholar
  21. 21.
    Laghrib F, Lahrich S, Farahi A, Bakasse M, El Mhammedi MA (2018) Impregnation of silver in graphite carbon using solid reaction: electrocatalysis and detection of 4-nitroaniline. J Electroanal Chem 823:26–31CrossRefGoogle Scholar
  22. 22.
    Starowicz M, Stypuła B, Banas J (2006) Electrochemical synthesis of silver nanoparticles. Electrochem Commun 8:227–230CrossRefGoogle Scholar
  23. 23.
    Welch CM, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384:601–619CrossRefGoogle Scholar
  24. 24.
    Sun L, Zhang Z, Mater HD (2003) A novel method for preparation of silver nanoparticles. Mater Lett 57:3874–3879CrossRefGoogle Scholar
  25. 25.
    Fukushima M, Yanagi H, Hayashi S, Suganuma N, Taniguchi Y (2003) Fabrication of gold nanoparticles and their influence on optical properties of dye-doped sole gel films. Thin Solid Films 438-439:39–43CrossRefGoogle Scholar
  26. 26.
    Dai X, Nekrassova O, Hyde ME, Compton RG (2004) Anodic stripping voltammetry of arsenic (III) using gold nanoparticles modified electrodes. Anal Chem 76:5924–5959CrossRefGoogle Scholar
  27. 27.
    El-Deab MS, Okajima T, Ohsaka T (2003) Electrochemical reduction of oxygen on gold nanoparticle-electrodeposited glassy carbon electrodes. J Electrochem Soc 150:851–857CrossRefGoogle Scholar
  28. 28.
    Welch CM, Banks CE, Simm AO, Compton RG (2005) Silver nanoparticles assemblies supported on glassy-carbon electrodes for the electroanalytical detection of hydrogen peroxide. Anal Bioanal Chem 382:12–21CrossRefGoogle Scholar
  29. 29.
    Yin B, Ma H, Wang S, Chen S (2003) Electrochemical synthesis of silver nanoparticles under protection of poly(Nvinylpyrrolidone). J Phys Chem B 107:8898–8904CrossRefGoogle Scholar
  30. 30.
    Hammani H, Boumya W, Laghrib F, Farahi A, Lahrich S, Aboulkas A, El Mhammedi MA (2017) Electro-catalytic effect of Al2O3 supported onto activated carbon in oxidizing phenol at graphite electrode, mater. Today Chem 3:27–36Google Scholar
  31. 31.
    Encarnacion BCM, Olga DR, Julia AMM (2007) Determination of lamotrigine by adsorptive stripping voltammetry using silver nanoparticle-modified carbon screen-printed electrodes. Talanta 74:59–64CrossRefGoogle Scholar
  32. 32.
    Farahi A, Achak M, El Gaini L, El Mhammedi MA, Bakasse M (2015) Electrochemical determination of paraquat in citric fruit based on electrodeposition of silver particles onto carbon paste electrode. J Food Drug Anal 23:463–471CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Zhao Y, Yuan S, Wang H, He C (2013) Electrocatalysis and detection of nitrite on a reduced grapheme/pd nanocomposite modified glassy carbon electrode. Sens Actuator B 185:602–607CrossRefGoogle Scholar
  34. 34.
    A.J. Bard, L.R. Faulkner, Electrochemical methods, fundamentals and applications, Wiley, New York, (2001), 163Google Scholar
  35. 35.
    AnuPrathap MU, Anuraj V, Satpati B, Srivastava R (2013) Facile preparation of Ni (OH)2-MnO2 hybrid material and its application in the electrocatalytic oxidation of hydrazine. J Hazard Mater 262:766–774CrossRefGoogle Scholar
  36. 36.
    Zavar MHA, Heydari S, Rounaghi GH, Eshghi H, Toupkanloo HA (2012) Electrochemical behavior of para-nitroaniline at a new synthetic crown ether-silver nanoparticle modified carbon paste electrode. Anal Methods 4:953–958CrossRefGoogle Scholar
  37. 37.
    Rameshkumar P, Ramaraj R (2014) Electroanalysis of nitrobenzene derivatives and nitrite ions using silver nanoparticles deposited silica spheres modified electrode. J Electroanal Chem 731:72–77CrossRefGoogle Scholar
  38. 38.
    Zhao F, Liu L, Xiao F, Li J, Yan R, Fan S, Zeng B (2007) Sensitive voltammetric response of p-nitroaniline on single-wall carbon nanotube-ionic liquid gel modified glassy carbon electrodes. Electroanalysis 19:1387–1393CrossRefGoogle Scholar
  39. 39.
    Ahmad R, Tripathy N, Ahn MS, Hahn YB (2017) Development of highly-stable binder-free chemical sensor electrodes for p-nitroaniline detection. J Colloid Interface Sci 494:300–306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • F. Laghrib
    • 1
  • N. Ajermoun
    • 1
  • A. Hrioua
    • 1
  • S. Lahrich
    • 1
  • A. Farahi
    • 2
  • A. El Haimouti
    • 1
  • M. Bakasse
    • 3
  • M. A. El Mhammedi
    • 1
  1. 1.Laboratoire de Chimie et Modélisation Mathématique, Faculté PolydisciplinaireUniversité Sultan Moulay SlimaneKhouribgaMorocco
  2. 2.Equipe de Catalyse et Environnement, Faculté de SciencesUniversité Ibn ZohrAgadirMorocco
  3. 3.Equipe d’Analyse des Micropolluants Organiques, Faculté de SciencesUniversite Chouaib DoukkaliEl JadidaMorocco

Personalised recommendations