, Volume 24, Issue 12, pp 4081–4092 | Cite as

Enhanced pseudocapacitive performance of SnO2, Zn-SnO2, and Ag-SnO2 nanoparticles

  • B. Saravanakumar
  • S. P. Ramachandran
  • G. Ravi
  • V. Ganesh
  • S. Ravichandran
  • P. Muthu Mareeswaran
  • R. YuvakkumarEmail author
Short Communication


Metal-doped tin oxide is gathering interest in the field of energy storage and power supply devices, particularly in supercapacitors applications. In the present study, we adopt a hydrothermal method to synthesis SnO2, Zn-SnO2, Ag-SnO2 nanoparticles at suitable conditions of temperature, pH, reaction time, and capping agents (CTAB). SnO2, Zn-SnO2, Ag-SnO2 nanoparticles were synthesized at 160 °C for 12 h and characterized by employing X-ray Diffraction to confirm the regular crystalline formation with tetragonal structure. Initial analyses by employing CV and GCD results exhibited specific capacitance of 308.2 Ag−1 for Ag-SnO2 nanoparticles at current density 0.5 A/g and can be considered as suitable candidate as positive electrode for supercapacitor device applications.


Hydrothermal CTAB Zn-SnO2 Ag-SnO2 Supercapacitors 


Funding information

This work was supported by UGC Start-Up Research Grant No. F.30-326/2016 (BSR).


  1. 1.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  3. 3.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  4. 4.
    Bao SJ, Li CM, Guo CX, Qiao Y (2008) Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. J Power Sources 180:676–681CrossRefGoogle Scholar
  5. 5.
    Lokhandea CD, Dubala DP, Joo OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270CrossRefGoogle Scholar
  6. 6.
    Gupta V, Gupta S, Miura N (2008) Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors. J Power Sources 175:680–685CrossRefGoogle Scholar
  7. 7.
    Liu T, Pell WG, Conway BE (1997) Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim Acta 42:3541–3552CrossRefGoogle Scholar
  8. 8.
    Wang P, Zhao YJ, Wen LX, Chen JF, Lei ZG (2014) Ultrasound–microwave-assisted synthesis of MnO2 supercapacitor electrode materials. Ind Eng Chem Res 53:20116–20123CrossRefGoogle Scholar
  9. 9.
    Xia XH, Tu JP, Mai YJ, Wang XL, Gu CD, Zhao XB (2011) Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J Mater Chem 21:9319–9325CrossRefGoogle Scholar
  10. 10.
    Shivakumara S, Penki TR, Munichandraiah N (2014) Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. J Solid State Electrochem 18:1057–1066CrossRefGoogle Scholar
  11. 11.
    Kim SI, Lee JS, Ahn HJ, Song HK, Jang JH (2013) Facile route to an efficient NiO supercapacitor with three-dimensional nanonetwork morphology. ACS Appl Mater Interfaces 5:1596–1603CrossRefGoogle Scholar
  12. 12.
    Bhardwaj N, Mohapatra S (2016) Structural, optical and gas sensing properties of Ag-SnO2 plasmonic nanocomposite thin films. Ceram Int 42:17237–17242CrossRefGoogle Scholar
  13. 13.
    Ge S, Zheng H, Sun Y, Jin Z, Shan J, Wang C, Wu H, li M, Meng F (2016) Ag/SnO2/graphene ternary nanocomposites and their sensing properties to volatile organic compounds. J Alloys Compd 659:127–131CrossRefGoogle Scholar
  14. 14.
    Wei F, Zhang H, Nguyen M, Ying M, Gao R, Jiao Z (2015) Template-free synthesis of flower-like SnO2 hierarchical nanostructures with improved gas sensing performance. Sensors Actuators B Chem 215:15–23CrossRefGoogle Scholar
  15. 15.
    Lia M, Zhu H, Wang B, Cheng J, Yana W, Xiaa S, Tang Z (2016) Ultrasensitive and highly selective detection of methoxy propanol based on Ag-decorated SnO2 hollow nanospheres. Sensors Actuators B Chem 232(545–556CrossRefGoogle Scholar
  16. 16.
    Rakibuddin MD, Ananthakrishnan R (2016) Novel Ag deposited nano coordination polymers derived porous SnO2/NiO hetero nanostructure for enhanced photo catalyticreduction of Cr(VI) under visible light. New J Chem 40:385–3394CrossRefGoogle Scholar
  17. 17.
    Dong B, Hu WH, Zhang XY, Wang J, Lu SS, Li X, Shang X, Liu YR, Han GQ, Chai YM, Liu CG (2017) Facile synthesis of hollow SnO2 nanospheres uniformly coated by Ag for electro-oxidation of hydrazine. Mater Lett 189:9–12CrossRefGoogle Scholar
  18. 18.
    Hassan MAM, Hateef AA, Majeed AMA, Al-Jabiry AJM, Jameel S, Abdul Hussian HAR (2014) Amperometric biosensor of SnO2 thin film modified by Pd, In and Ag nanostructure synthesized by CSP method. Appl Nanosci 4:927–934CrossRefGoogle Scholar
  19. 19.
    Ghanaatshoar M, Moradi M, Tohidi P (2014) Surface Plasmon resonance enhancement of the magneto-optical Kerr effect in Cu/Co/Ag/SnO2 structure. Eur Phys J Appl Phys 68:10402–10406CrossRefGoogle Scholar
  20. 20.
    Gupta A, Dhakate SR, Gurunathan P, Ramesha K (2017) High rate capability and cyclic stability of hierarchically porous Tin oxide (IV)–carbon nanofibers as anode in lithium ion batteries. Appl Nanosci 7:449–462CrossRefGoogle Scholar
  21. 21.
    Mishra RK, Sahay PP (2012) Zn-doped and undoped SnO2 nanoparticles: a comparative structural, optical and LPG sensing properties study. Mater Res Bull 47:4112–4118CrossRefGoogle Scholar
  22. 22.
    Liu X, Iqbal J, Wu Z, He B, Yu R (2010) Structure and room-temperature ferromagnetism of Zn-doped SnO2 nanorods prepared by solvothermal method. J Phys Chem C 114:4790–4796CrossRefGoogle Scholar
  23. 23.
    Rashad MM, Ismail AA, Osama I, Ibrahim IA, Kandil AHT (2014) Decomposition of methylene blue on transition metals doped SnO2 nanoparticles. Clean: Soil, Air, Water 42:657–663Google Scholar
  24. 24.
    Vignesh K, Hariharan R, Rajarajan M, Suganthi A (2013) Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin. Solid State Sci 21:91–99CrossRefGoogle Scholar
  25. 25.
    Sánchez Zeferino R, Pal U, Meléndrez R, Barboza Flores M (2013) PL and TL behaviors of Ag-doped SnO2 nanoparticles: effects of thermal annealing and Ag concentration. Advances in Nano Research 1:193–202CrossRefGoogle Scholar
  26. 26.
    Kumar R, Agrawal A, Nagarale RK, Sharma A (2016) High performance supercapacitors from novel metal-doped ceria-decorated aminated graphene. J Phys Chem C 120:3107–3116CrossRefGoogle Scholar
  27. 27.
    Hong W, Zhiyuan T, Lei S, Yanbing H, Yaxiana W, Zhongyan L (2009) Capacitance performance enhancement of TiO2 doped with Ni and graphite. Rare Metals 28:231–236CrossRefGoogle Scholar
  28. 28.
    Tung MT, Thuy HTB, Hang LTT (2015) Metal doped manganese oxide thin films for supercapacitor application. J Nanosci Nanotechnol 15:6949–6956CrossRefGoogle Scholar
  29. 29.
    Dong R, Ye Q, Kuang L, Lu X, Zhang Y, Zhang X, Tan G, Wen Y, Wang F (2013) Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl Mater Interfaces 5:9508–9516CrossRefGoogle Scholar
  30. 30.
    Kumar S, Sahare PD (2014) Gd3+ incorporated ZnO nanoparticles: a versatile material. Mater Res Bull 51:217–223CrossRefGoogle Scholar
  31. 31.
    Lerner I, Trus M, Cohen R, Yizhar O, Nussinovitch I, Atlas D (2006) Ion interaction at the pore of Lc-type Ca2+ channel is sufficient to mediate depolarization-induced exocytosis. J Neurochem 97:116–127CrossRefGoogle Scholar
  32. 32.
    Faisal M, Ismail AA, Ibrahim AA, Bouzid H, Al-Sayari SA (2013) Highly efficient photocatalyst based on Ce doped ZnO nanorods: controllable synthesis and enhanced photocatalytic activity. Chem Eng J 229:225–233CrossRefGoogle Scholar
  33. 33.
    Priya DS, Suriyaprabha R, Yuvakkumar R, Rajendran V (2014) Chitosan-incorporated different nanocomposite HPMC films for food preservation. J Nanopart Res 16:2248CrossRefGoogle Scholar
  34. 34.
    Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V (2013) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8:133–137CrossRefGoogle Scholar
  35. 35.
    Ramalingam KJ, Dhineshbabu NR, Srither SR, Saravanakumar B, Yuvakkumar R, Rajendran V (2014) Electrical measurement of PVA/graphene nanofibers for transparent electrode applications. Synth Met 191:113–119CrossRefGoogle Scholar
  36. 36.
    Sankarrajan S, Aravindan S, Yuvakkumar R, Sakthipandi K, Rajendran V (2009) Anomalies of ultrasonic velocities, attenuation and elastic moduli in Nd1−xSrxMnO3 perovskite manganite materials. J Magn Magn Mater 321:3611–3620CrossRefGoogle Scholar
  37. 37.
    Nathanael AJ, Yuvakkumar R, Hong SI, Oh TH (2014) Novel zirconium nitride and hydroxyapatite nanocomposite coating: detailed analysis and functional properties. ACS Appl Mater Interfaces 6:9850–9857CrossRefGoogle Scholar
  38. 38.
    Yuvakkumar R, Hong SI (2014) Green synthesis of spinel magnetite iron oxide nanoparticles. Adv Mater Res 1051:39–42CrossRefGoogle Scholar
  39. 39.
    Suresh J, Yuvakkumar R, Sundrarajan M, Hong SI (2014) Green synthesis of magnesium oxide nanoparticles. Adv Mater Res 952:141–144CrossRefGoogle Scholar
  40. 40.
    Zuo J, Xu C, Liu X, Wang C, Wang C, Hu Y, Qian Y (1994) Study of the Raman spectrum of nanometer SnO2. J Appl Phys 75:1835–1836.38CrossRefGoogle Scholar
  41. 41.
    Dieguez A, Rodrıguez AR, Vila A, Morante JR (2001) The complete Raman spectrum of nanometric SnO2 particles. J Appl Phys 9:1550–1557CrossRefGoogle Scholar
  42. 42.
    Kar A, Kundu S, Patra A (2011) Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles. J Phys Chem C 115:118–124CrossRefGoogle Scholar
  43. 43.
    Yu B, Guo L, Yang Z, Zhu C, Gan F, Zhang G, Tang G, Wu X, Chen W (1999) The infrared vibration characteristics of SnO2 nanoparticles. Phys Lett A 251:67–72CrossRefGoogle Scholar
  44. 44.
    Sharma A, Tomar M, Gupta V (2012) Room temperature trace level detection of NO2 gas using SnO2 modified carbon nanotubes based sensor. J Mater Chem 22:23608–23616CrossRefGoogle Scholar
  45. 45.
    Zhou JX, Zhang MS, Hong JM, Fang JL, Yin Z (2005) Structural and spectral properties of SnO2 nanocrystal prepared by micro emulsion technique. Appl Phys A Mater Sci Process 81:177–182CrossRefGoogle Scholar
  46. 46.
    Dutta K, De SK (2007) Optical and nonlinear electrical properties of SnO2–polyaniline nanocomposites. Mater Lett 61:4967–4971CrossRefGoogle Scholar
  47. 47.
    Saravanakumar B, Muthu Lakshmi S, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2017) Electrochemical properties of rice-like copper manganese oxide (CuMn2O4) nanoparticles for pseudocapacitor applications. J Alloys Compd 723:115–122CrossRefGoogle Scholar
  48. 48.
    Gomez J, Kalu EE (2013) High-performance binder-free Co–Mn composite oxide supercapacitor electrode. J Power Sources 230:218–224CrossRefGoogle Scholar
  49. 49.
    Murugan R, Ravi G, Yuvakkumar R, Rajendran S, Maheswari N, Muralidharan G, Hayakawa Y (2017) Pure and Co doped CeO2 nanostructure electrodes with enhanced electrochemical performance for energy storage applications. Ceram Int 43:10494–10501CrossRefGoogle Scholar
  50. 50.
    Pusawale SN, Deshmukh PR, Lokhande CD (2011) Chemical synthesis of nanocrystalline SnO2 thin films for supercapacitor application. Appl Surf Sci 257:9498–9502CrossRefGoogle Scholar
  51. 51.
    Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl Mater Interfaces 6:2174–2184CrossRefGoogle Scholar
  52. 52.
    Ai Hu Z, Long Xie Y, Xian Wang Y, Ping Mo L, Ying Yang Y, Yu Zhang Z (2009) Polyaniline/SnO2 nanocomposite for supercapacitor applications. Mater Chem Phys 114:990–995CrossRefGoogle Scholar
  53. 53.
    Meng X, Zhou M, Li X, Yao J, Liu F, He H, Xiao P, Zhang Y (2013) Synthesis of SnO2 nanoflowers and electrochemical properties of Ni/SnO2 nanoflowers in supercapacitor. Electrochim Acta 109:20–26CrossRefGoogle Scholar
  54. 54.
    Sankar KV, Selvan RK (2015) The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors. J Power Sources 275:399–407CrossRefGoogle Scholar
  55. 55.
    Bashir B, Shaheen W, Asghar M, Warsi MF, Azhar Khan M, Haider S, Shakir I, Shahid M (2017) Copper doped manganese ferrites nanoparticles anchored on graphene nano-sheets for high performance energy storage applications. J Alloys Compd 695:881–887CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. Saravanakumar
    • 1
  • S. P. Ramachandran
    • 1
  • G. Ravi
    • 1
  • V. Ganesh
    • 2
  • S. Ravichandran
    • 3
  • P. Muthu Mareeswaran
    • 4
  • R. Yuvakkumar
    • 1
    Email author
  1. 1.Nanomaterials Laboratory, Department of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Electrodics and Electrocatalysis (EEC) DivisionCSIR–Central Electrochemical Research Institute (CSIR–CECRI)KaraikudiIndia
  3. 3.Electro Inorganic DivisionCSIR–Central Electrochemical Research Institute (CSIR–CECRI)KaraikudiIndia
  4. 4.Department of Industrial ChemistryAlagappa UniversityKaraikudiIndia

Personalised recommendations