Advertisement

Ionics

pp 1–7 | Cite as

A green and low-cost synthetic approach based on deep eutectic choline-urea solvent toward synthesis of CZTS thin films

  • Sara Azmi
  • Luca Pezzato
  • Marco Sturaro
  • El Mati Khoumri
  • Alessandro Martucci
  • Manuele Dabalà
Original Paper
  • 18 Downloads

Abstract

In this paper, a new, simple, and sustainable method of the Cu2ZnSnS4 (CZTS) thin-film synthesis is presented. The CZTS films have been electrochemically deposited by a single-step electrodeposition from deep eutectic (choline-urea) electrolyte, without sulfurization step, onto fluorine-doped tin oxide (FTO)-coated glass substrates. − 1.3 V/SCE has been selected as the optimum deposition potentials to grow the CZTS thin films. As-deposited CZTS films were characterized using a range of characterization techniques to study the structural, morphological, and compositional properties and confirmed the presence of the Cu2ZnSnS4 phases. The direct band gap energy for the CZTS thin films is found to be about 1.48 eV.

Keywords

Thin films Semiconductors Electrodeposition Ionic liquid electrolytes CZTS Choline-urea Photovoltaics Deep eutectic solvents 

References

  1. 1.
    Kanuru CS, Shekar GL, Krishnamurthy L, Urs RGK (2014) Surface morphological studies of solar absorber layer Cu2ZnSnS4 (CZTS) thin films by non-vacuum deposition methods. J Nano-Electron Phys 6(2):2004–2001Google Scholar
  2. 2.
    Jae-Seung S, Sang-Yul L, Jae-Choon L, Hyo-Duk N, Kyoo-Ho K (2003) Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Sol Energy Mater Sol Cells 75:155–162CrossRefGoogle Scholar
  3. 3.
    Guo Q, Ford GM, Hillhouse HW, Agrawal R (2009) Sulfide nanocrystal inks for dense Cu(In1−xGax)(S1−ySey)2 absorber films and their photovoltaic performance. Nano Lett 9(8):3060–3065CrossRefGoogle Scholar
  4. 4.
    Kumar YBK, Babu GS, Bhaskar PU, Raja VS (2009) Effect of starting-solution pH on the growth of Cu2ZnSnS4 thin films deposited by spray pyrolysis. Phys Status Solidi A 206:1525–1530CrossRefGoogle Scholar
  5. 5.
    Hibberd CJ, Chassaing E, Liu W, Mitzi DB, Lincot D, Tiwari AN (2010) Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers. Prog Photovolt Res Appl 18(6):434–452CrossRefGoogle Scholar
  6. 6.
    El Manouni A, Casasus R, Mollar M, Marí B (2009) Propriétés optiques de couches minces de ZnCoO préparés par électrodéposition. Afr Sci 5(3):48–64Google Scholar
  7. 7.
    Lv J, Sun Y, Zhao M, Cao L, Xu J, He G, Zhang M, Sun Z (2016) Rectifying properties of ZnO thin films deposited on FTO by electrodeposition technique. Appl Surf Sci.   https://doi.org/10.1016/j.apsusc.2016.01.104 CrossRefGoogle Scholar
  8. 8.
    Lincot D, Gomez MH, Kessler J, Vedel J, Dimmler B, Schock HW (1990) Photoelectrochemical study of p-type copper indium diselenide thin films for photovoltaic applications. Sol Energy Mater 20:67–79. ​ https://doi.org/10.1016/0165-1633(90)90018-V CrossRefGoogle Scholar
  9. 9.
    Brouri T (2011) Élaboration et étude des propriétés électriques des couches minces et des nanofils de ZnO. Université Paris-EstGoogle Scholar
  10. 10.
    Ahn S, Kim CW, Yun JH, Gwak J, Jeong S, Ryu BH, Yoon KH (2010) CuInSe2 (CIS) thin film solar cells by direct coating and selenization of solution precursors. J Phys Chem C 114:8108–8113CrossRefGoogle Scholar
  11. 11.
    Mg L, Gr B (2016) Electrochemical synthesis and characterization of Cu2ZnSnS4 thin films. J Mater Sci Eng 5:4Google Scholar
  12. 12.
    Abermann S (2013) Non-vacuum processed next generation thin film photovoltaics: towards marketable efficiency and production of CZTS based solar cells. Sol Energy 94:37–70. ​ https://doi.org/10.1016/j.solener.2013.04.017 CrossRefGoogle Scholar
  13. 13.
    Swami SK, Kumar A, Dutta V (2013) Deposition of kesterite Cu2ZnSnS4 (CZTS) thin films by spin coating technique for solar cell application. Energy Procedia 33:198–202CrossRefGoogle Scholar
  14. 14.
    Bazine S, Azmi S, Khoumri E (2014) Study of mechanisms of electrodeposition of thin films semiconductors, for photovoltaic destination. Proc Eng Technol–PETGoogle Scholar
  15. 15.
    Shivagan DD, Dale PJ, Samantilleke AP, Peter LM (2007) Electrodeposition of chalcopyrite films from ionic liquid electrolytes. Thin Solid Films 515(15):5899–5903. ​ https://doi.org/10.1016/j.tsf.2006.12.092 CrossRefGoogle Scholar
  16. 16.
    Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126(29):9142–9147CrossRefGoogle Scholar
  17. 17.
    Chen H, Ye Q, He X, Ding J, Zhang Y, Han J, Liu J, Liao C, Mei J, Lau W (2014) Electrodeposited CZTS solar cells from reline electrolyte. Green Chem 16:3841–3845CrossRefGoogle Scholar
  18. 18.
    Reddy RG (2006) Ionic liquids: How well do we know them? J Phase Equilib Diffus 27(3):210–211CrossRefGoogle Scholar
  19. 19.
    Shin S, Park C, Kim C, Kim Y, Park S, Lee JH (2015) Cyclic voltammetry studies of copper, tin and zinc electrodeposition in a citrate complex system for CZTS solar cell application. Curr Appli Phys.  https://doi.org/10.1016/j.cap.2015.11.017 CrossRefGoogle Scholar
  20. 20.
    Ateya BG, AlKharafi FM, Al-Azab AS (2003) Electrodeposition of sulfur from sulfide contaminated brines. Electrochem Solid-State Lett 6(9):C137-C140CrossRefGoogle Scholar
  21. 21.
    Jeon M, Shimizu T, Shingubara S (2011) Cu2ZnSnS4 thin films and nanowires prepared by different single-step electrodeposition method in quaternary electrolyte. Mater Lett 65:2364–2367CrossRefGoogle Scholar
  22. 22.
    Pawar SM, Pawar BS, Moholkar AV, Choi DS, Yun JH, Moon JH, Kolekar SS, Kim JH,  (2010) Electrochim Acta 55(12):4057–4061Google Scholar
  23. 23.
    Scragg J J (2010) Studies of Cu2ZnSnS4 films prepared by sulfurisation of electrodeposited precursors. University of Bath, PhD ThesisGoogle Scholar
  24. 24.
    Ennaoui A, Lux-Steiner M,  Weber A ,  Abou-Ras D ,  Kötschau I , Schock HW , Schurr R, Hölzing A, Jost S , R. Hock, Voß T, Schulze J, Kirbs A (2009) Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films 517(7):2511–2251CrossRefGoogle Scholar
  25. 25.
    Ahmed S, Reuter KB, Gunawan O, Guo L, Romankiw LT, Deligianni H (Feb. 2012) A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv Energy Mater 2(2):253–259CrossRefGoogle Scholar
  26. 26.
    Sarswat PK, Free ML (2012) A comparative study of co-electrodeposited Cu2ZnSnS4 absorber material on fluorinated tin oxide and molybdenum substrates. J Electron Mater.  https://doi.org/10.1007/s11664-012-2042-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sara Azmi
    • 1
    • 2
  • Luca Pezzato
    • 2
  • Marco Sturaro
    • 2
  • El Mati Khoumri
    • 1
  • Alessandro Martucci
    • 2
  • Manuele Dabalà
    • 2
  1. 1.Laboratory of Physical Chemistry and Bioorganic ChemistryFaculty of Science and Technics Mohammedia, University Hassan IICasablancaMorocco
  2. 2.Department of Industrial EngineeringUniversity of PadovaPadovaItaly

Personalised recommendations