, Volume 25, Issue 6, pp 2525–2533 | Cite as

Protecting lithium metal anode by magnetron sputtering a copper coating

  • Qiong Tang
  • Heqin LiEmail author
  • Yuanyuan Pan
  • Jing Zhang
  • Yong Chen
Original Paper


We propose that the Li anode can be protected by a Cu coating via the technique of magnetron sputtering. Cu has high electrical conductivity, mechanical strength, and chemical stability. Li deposition on Cu coating with a porous structure disperses the local current density and produces a uniform Li-ion flux, greatly suppressing growth of Li dendrites and the layer prevents Li from directly contacting electrolyte while ensures Li-ion transport. The symmetric battery with the Cu-coated Li anode lasting for 140 h presents stable Li deposition/dissolution and improved polarization. The full Li–S battery adopting this modified anode exhibits well-improved cycling stability and capacity retention. It delivers an initial discharge specific capacity of 1148 mAh/g and obtains 526 mAh/g after 300 cycles with high Coulombic efficiency of 99.6% at 0.5 C (1 C = 1675 mAh/g), while the traditional Li–S battery only obtains 490 mAh/g after 200 cycles. Scanning electron microscopy images of the cycled Cu-coated Li anode presents favorable integrity. Electrochemical impedance spectra, cyclic voltammogram, and charge-discharge profiles were investigated to consolidate the function of the Cu coating. This simple and facile strategy provides an approach to protect the metal electrode applied in other metal batteries.


Magnetron sputtering Cu Li anode Dendrite Lithium–sulfur battery 


Funding information

The authors gratefully acknowledge the support of the “Strategic Priority Research Program” of the Chinese Academy of Science (no. XDA03040000) and the “Student’s Platform for Innovation and Entrepreneurship Training Program” of the Ministry of Education of China (no. 201710359071).


  1. 1.
    Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Edit 47:2930–2946CrossRefGoogle Scholar
  2. 2.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRefGoogle Scholar
  3. 3.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29CrossRefGoogle Scholar
  4. 4.
    Manthiram A, Fu Y, Chun SH, Zu C, Su YS (2014) Rechargeable lithium−sulfur batteries. Chem Rev 114:11751–11787CrossRefGoogle Scholar
  5. 5.
    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang JG (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537CrossRefGoogle Scholar
  6. 6.
    Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H, Yan K, Xie J, Cui Y (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11:626–632CrossRefGoogle Scholar
  7. 7.
    Lang J, Qi L, Luo Y, Wu H (2017) High performance lithium metal anode: progress and prospects. Energ Stor Mater 7:115–129Google Scholar
  8. 8.
    Sun Y, Liu N, Cui Y (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1:16071CrossRefGoogle Scholar
  9. 9.
    Zhang K, Lee G, Park M, Li W, Kang Y (2016) Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv Energy Mater 6:1600811CrossRefGoogle Scholar
  10. 10.
    Yun Q, He YB, Lv W, Zhao Y, Li B, Kang F, Yang QH (2016) Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv Mater 28:6932–6939CrossRefGoogle Scholar
  11. 11.
    Chen XB, Peng HJ, Huang JQ, Wei F, Zhang Q (2014) Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium–sulfur batteries. Small 10:4257–4263Google Scholar
  12. 12.
    Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206CrossRefGoogle Scholar
  13. 13.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418CrossRefGoogle Scholar
  14. 14.
    Zhang X, Wang W, Wang A, Huang Y, Yuan K, Yu Z, Qiu J, Yang Y (2014) Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery. J Mater Chem A 2:11660–11665CrossRefGoogle Scholar
  15. 15.
    Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ (2014) Metallic anodes for next generation secondary batteries. Chem Soc Rev 45:9011–9034Google Scholar
  16. 16.
    Jing G, Wen Z, Wu M, Jin J, Liu Y (2015) Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem Commun 51:59–63CrossRefGoogle Scholar
  17. 17.
    Ye H, Yin YX, Zhang SF, Shi Y, Liu L, Zhang XX, Wen R, Guo YG, Wan LJ (2017) Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy 36:411–417CrossRefGoogle Scholar
  18. 18.
    Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473CrossRefGoogle Scholar
  19. 19.
    Liu Y, Lin D, Yuen PY, Liu K, Xie J, Dauskardt RH, Cui Y (2017) An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater 29:1605531CrossRefGoogle Scholar
  20. 20.
    Chen L, Connell JG, Nie A, Huang Z, Zavadil KR, Klavetter KC, Yuan Y, Sharifi-Asl S, Shahbazian-Yassar R, Libera J, Mane AU, Elam JW (2017) Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. J Mater Chem A 5:12297–12309CrossRefGoogle Scholar
  21. 21.
    Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han X, Hu L, Lee SB, Rubloff GW, Noked M (2015) Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9:5884–5892CrossRefGoogle Scholar
  22. 22.
    Wang L, Wang Q, Jia W, Chen S, Gao P, Li J (2017) Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. J Power Sources 342:175–182CrossRefGoogle Scholar
  23. 23.
    Zhang YJ, Bai WQ, Wang XL, Xia XH, Gu CD, Tu JP (2016) In situ confocal microscopic observation on inhibiting the dendrite formation of a-CNx/Li electrode. J Mater Chem A 4:15597–15604CrossRefGoogle Scholar
  24. 24.
    Zhang YJ, Liu XY, Bai WQ, Tang H, Shi SJ, Wang XL, Gu CD, Tu JP (2014) Magnetron sputtering amorphous carbon coatings on metallic lithium: towards promising anodes for lithium secondary batteries. J Power Sources 266:43–50CrossRefGoogle Scholar
  25. 25.
    Yang CP, Yin YX, Zhang SF, Li NW, Guo YG (2015) Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 6:8058CrossRefGoogle Scholar
  26. 26.
    Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9:618–623CrossRefGoogle Scholar
  27. 27.
    Kim H, Lee JT, Lee DC, Oschatz M, Cho W, Kaskel S, Yushin G (2013) Enhancing performance of Li–S cells using a Li–Al alloy anode coating. Electrochem Commun 36:38–41CrossRefGoogle Scholar
  28. 28.
    Yan B, Yang P, Zhao Y, Zhang J, An M (2012) Electrocodeposition of lithium and copper from room temperature ionic liquid 1-ethyl-3-methyllimidazolium bis(trifluoromethylsulfonyl)imide. RSC Adv 2:12926–12931CrossRefGoogle Scholar
  29. 29.
    Tang Q, Li H, Zuo M, Zhang J, Huang Y, Bai P, Xu J, Zhou K (2016) Optimized assembly of micro−/meso−/macroporous carbon for Li–S batteries. Nano 12:2930–2946Google Scholar
  30. 30.
    Zhang YJ, Wang W, Tang H, Bai WQ, Ge X, Wang XL, Gu CD, Tu JP (2015) An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J Power Sources 277:304–311CrossRefGoogle Scholar
  31. 31.
    Vook R (1982) Structure and growth of thin films (vacuum evaporation). Int Metals Rev 27:209–245CrossRefGoogle Scholar
  32. 32.
    Schnyder B, Lippert T, Kötz R, Wokaun A, Graubner VM, Nuyken O (2003) UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry. Surf Sci 532:1067–1071CrossRefGoogle Scholar
  33. 33.
    Dan Z, Qin F, Sugawara Y, Muto I, Hara N (2012) Fabrication of nanoporous copper by dealloying amorphous binary Ti–Cu alloys in hydrofluoric acid solutions. Intermetallics 29:14–20CrossRefGoogle Scholar
  34. 34.
    Xu H, Pang S, Jin Y, Zhang T (2016) General synthesis of sponge-like ultrafine nanoporous metals by dealloying in citric acid. Nano Res 9:2467–2477CrossRefGoogle Scholar
  35. 35.
    Zhang Z, Wang G, Lai Y, Li J (2016) A freestanding hollow carbon nanofiber/reduced graphene oxide interlayer for high-performance lithium–sulfur batteries. J Alloy Compound 663:501–506CrossRefGoogle Scholar
  36. 36.
    Rao M, Song X, Liao H, Cairns EJ (2012) Carbon nanofiber–sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochim Acta 65:228–233CrossRefGoogle Scholar
  37. 37.
    Zhang SS, Read JA (2012) A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J Power Sources 200:77–82CrossRefGoogle Scholar
  38. 38.
    Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162CrossRefGoogle Scholar
  39. 39.
    Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable LiS batteries. Adv Mater 23:5641–5644CrossRefGoogle Scholar
  40. 40.
    Chen Z, Du XL, He JB, Li F, Wang Y, Li YL, Li B, Xin S (2017) Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries. Acs Appl Mater Interfaces 9:33855–33862CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qiong Tang
    • 1
    • 2
  • Heqin Li
    • 1
    Email author
  • Yuanyuan Pan
    • 1
  • Jing Zhang
    • 1
    • 2
  • Yong Chen
    • 1
  1. 1.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.School of Electronic Science and Applied PhysicsHefei University of TechnologyHefeiChina

Personalised recommendations