Advertisement

Ionics

, Volume 25, Issue 6, pp 2519–2524 | Cite as

Cotton as a sustainable source of CuxO/C anode for high-performance Li-ion battery

  • Hui Zhang
  • Rui Chen
  • Xiaofeng Zhang
  • Ping Zong
  • Yu Bai
  • Hong Jin
  • Hui XuEmail author
  • Kun LianEmail author
  • Fei MaEmail author
Original Paper
  • 87 Downloads

Abstract

This paper reports a simple-assembling synthesis of CuxO/C composite as the anode for lithium-ion batteries. The CuxO/C composite can be easily attained through using cotton as the template. Used as the anode material, the CuxO/C electrode has shown a relatively stable electrochemistry performance compared with the pristine CuO electrode. The cycling test results showed that the CuxO/C electrode achieved the steady specific capacity values of 381 mAhg−1 at 335 mAg−1 after 350 cycles while the capacity of the CuO electrode decreased after several cycles before it increased to 375 mAhg−1. This CuxO/C anode electrode stability is considered attributed to its core/shell structure, which can help keep the electrode structure stable during cycling.

Keywords

Cotton CuxCore/shell structure LIBs 

Notes

Funding information

This work is sponsored by the Collaborative Innovation Centre of Suzhou Nano Science and Technology, Jiangsu Province Fundamental Research Grant (BK20150379, BK20160389), Key Laboratory of Renewable Nanomaterials of Suzhou (SZS201513), and Suzhou City Key Industry Technological Innovation (Perspective Application Research) Grant (SYG201621).

Supplementary material

11581_2018_2693_MOESM1_ESM.docx (5.7 mb)
ESM 1 (DOCX 5846 kb)

References

  1. 1.
    Chen X, Sun K, Zhang E, Zhang N (2013) 3D porous micro/nanostructured interconnected metal/metal oxide electrodes for high-rate lithium storage. RSC Adv 3(2):432–437CrossRefGoogle Scholar
  2. 2.
    Chen LB, Lu N, Xu CM, Yu HC, Wang TH (2009) Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim Acta 54(17):4198–4201CrossRefGoogle Scholar
  3. 3.
    Wang SQ, Zhang JY, Chen CH (2007) Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries. Scr Mater 57(4):337–340CrossRefGoogle Scholar
  4. 4.
    Xiang JY, Tu JP, Zhang L, Zhou Y, Wang XL, Shi SJ (2010) Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J Power Sources 195(1):313–319CrossRefGoogle Scholar
  5. 5.
    Yang M, Gao Q (2011) Copper oxide and ordered mesoporous carbon composite with high performance using as anode material for lithium-ion battery. Microporous Mesoporous Mater 143(1):230–235CrossRefGoogle Scholar
  6. 6.
    Liu N, Lu Z, Zhao J, McDowell MT, Lee H-w, Zhao W, Cui Y (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9(3):187–192CrossRefGoogle Scholar
  7. 7.
    Cai Z, Xu L, Yan M, Han C, He L, Hercule KM, Niu C, Yuan Z, Xu W, Qu L, Zhao K, Mai L (2015) Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett 15(1):738–744CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Wang X, Zeng L, Song S, Liu D (2012) Green and controlled synthesis of Cu2O-graphene hierarchical nanohybrids as high-performance anode materials for lithium-ion batteries via an ultrasound assisted approach. Dalton Trans 41(15):4316–4319CrossRefGoogle Scholar
  9. 9.
    Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148(4):A285CrossRefGoogle Scholar
  10. 10.
    Wang J-G, Zhang C, Jin D, Xie K, Wei B (2015) Synthesis of ultralong MnO/C coaxial nanowires as freestanding anodes for high-performance lithium ion batteries. J Mater Chem A 3(26):13699–13705CrossRefGoogle Scholar
  11. 11.
    Zhang C, Wang J-G, Jin D, Xie K, Wei B (2015) Facile fabrication of MnO/C core–shell nanowires as an advanced anode material for lithium-ion batteries. Electrochim Acta 180:990–997CrossRefGoogle Scholar
  12. 12.
    Wang J-G, Jin D, Zhou R, Li X, Liu X-R, Shen C, Xie K, Li B, Kang F, Wei B (2016) Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries. ACS Nano 10(6):6227–6234CrossRefGoogle Scholar
  13. 13.
    Jin R, Jiang H, Sun Y, Ma Y, Li H, Chen G (2016) Fabrication of NiFe 2 O 4 /C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries. Chem Eng J 303:501–510CrossRefGoogle Scholar
  14. 14.
    Jin R, Ma Y, Sun Y, Li H, Wang Q, Chen G (2017) Manganese cobalt oxide (MnCo2O4) hollow spheres as high capacity anode materials for lithium-ion batteries. Energy Technol 5(2):293–299CrossRefGoogle Scholar
  15. 15.
    Yu L, Guan B, Xiao W, Lou XWD (2015) Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 5(21):1500981CrossRefGoogle Scholar
  16. 16.
    Chen W, Zhang H, Ma Z, Yang B, Li Z (2015) High electrochemical performance and lithiation–delithiation phase evolution in CuO thin films for Li-ion storage. J Mater Chem A 3(27):14202–14209CrossRefGoogle Scholar
  17. 17.
    Lamberti A, Destro M, Bianco S, Quaglio M, Chiodoni A, Pirri CF, Gerbaldi C (2012) Facile fabrication of cuprous oxide nanocomposite anode films for flexible Li-ion batteries via thermal oxidation. Electrochim Acta 70:62–68CrossRefGoogle Scholar
  18. 18.
    Zhou J, Ma L, Song H, Wu B, Chen X (2011) Durable high-rate performance of CuO hollow nanoparticles/graphene-nanosheet composite anode material for lithium-ion batteries. Electrochem Commun 13(12):1357–1360CrossRefGoogle Scholar
  19. 19.
    Shen X, Chen S, Mu D, Wu B, Wu F (2013) Novel synthesis and electrochemical performance of nano-structured composite with Cu2O embedment in porous carbon as anode material for lithium ion batteries. J Power Sources 238:173–179CrossRefGoogle Scholar
  20. 20.
    Chowdhury T, Rohan JF, Hasan M (2010) Nanotubes of core/shell Cu / Cu2O as anode materials for Li-ion rechargeable batteries. J Electrochem Soc 157:A682–A688CrossRefGoogle Scholar
  21. 21.
    Chen X, Zhang N, Sun K (2012) Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties. J Mater Chem 22(27):13637–13642CrossRefGoogle Scholar
  22. 22.
    Ji H, Miao X, Wang L, Qian B, Yang G (2013) Microwave-assisted hydrothermal synthesis of sphere-like C/CuO and CuO nanocrystals and improved performance as anode materials for lithium-ion batteries. Powder Technol 241:43–48CrossRefGoogle Scholar
  23. 23.
    Zhang W, Zhou Z, Zhao W, Yang Z, Yang X (2014) Chemical replacement route to Cu2-xSe-coated CuO nanotube array anode for enhanced performance in lithium ion batteries. J Mater Chem A 2(16):5800–5808CrossRefGoogle Scholar
  24. 24.
    Cao F, Xia XH, Pan GX, Chen J, Zhang YJ (2015) Construction of carbon nanoflakes shell on CuO nanowires core as enhanced core/shell arrays anode of lithium ion batteries. Electrochim Acta 178:574–579CrossRefGoogle Scholar
  25. 25.
    Liu X, Li Z, Zhang Q, Li F, Kong T (2012) Preparation of CuO/C core-shell nanowires and its application in lithium ion batteries. Mater Lett 80:37–39CrossRefGoogle Scholar
  26. 26.
    Lee SH, Yu SH, Lee JE, Jin A, Lee DJ, Lee N, Jo H, Shin K, Ahn TY, Kim YW, Choe H, Sung YE, Hyeon T (2013) Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett 13(9):4249–4256CrossRefGoogle Scholar
  27. 27.
    Wang L, Zhang G, Liu Q, Duan H (2018) Recent progress in Zn-based anodes for advanced lithium ion batteries. Mater Chem Front 2:1414–1435CrossRefGoogle Scholar
  28. 28.
    Zhang G, Zhu J, Zeng W, Hou S, Gong F, Li F, Li CC, Duan H (2014) Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy 9:61–70CrossRefGoogle Scholar
  29. 29.
    Zhang H, Tang Z, Zhang K, Wang L, Shi H, Zhang G, Duan H (2017) Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries. Electrochim Acta 247:692–700CrossRefGoogle Scholar
  30. 30.
    Zhang H, Zhang G, Li Z, Qu K, Shi H, Zhang Q, Duan H, Jiang J (2018) Osiers-sprout-like heteroatom-doped carbon nanofibers as ultrastable anodes for lithium/sodium ion storage. Nano Res 11:3791–3801CrossRefGoogle Scholar
  31. 31.
    Zhong S, Zhang H, Fu J, Shi H, Wang L, Zeng W, Liu Q, Zhang G, Duan H (2018) In-situ synthesis of 3D carbon coated zinc-cobalt bimetallic oxide networks as anode in lithium-ion batteries. ChemElectroChem 5(13):1708–1716CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Suzhou Research InstituteXi’an Jiaotong UniversitySuzhouPeople’s Republic of China
  3. 3.School of Nano-Science and Nano-Engineering (Suzhou)Xi’an Jiaotong UniversitySuzhouPeople’s Republic of China
  4. 4.Research InstituteNingde Amperex Technology LimitedNingdePeople’s Republic of China
  5. 5.Suzhou GuanJie Nano Antibacterial Coating Technology CO., LTDSuzhouPeople’s Republic of China

Personalised recommendations