, Volume 25, Issue 1, pp 17–24 | Cite as

Fabrication of gel polymer electrolyte with polysulfide immobilization effect for lithium sulfur battery

  • Yan Yuan
  • Dongdong Zheng
  • Zhao FangEmail author
  • Hai LuEmail author
  • Xiaobing Gou
  • Hanmei Liu
  • Manbo Liu
Original Paper


Development of lithium sulfur battery is greatly limited by low sulfur utilization and weak capacity retention, which are mainly due to dissolution and shuttle of intermediate polysulfides in the electrolyte. Herein, a novel gel polymer electrolyte (GPE) consisting of poly (vinylidenefluoride-hexafluoropropylene)/poly (vinylpyrrolidone) (P (VDF-HFP)/PVP) was facilely synthesized and introduced for rechargeable lithium sulfur battery to address above challenges. The polymer matrix owns favorable porous characteristic, high electrolyte uptake, enough electrochemical stability, and good compatibility with metallic Li. What is more, it provides a dual diffusion limitation strategy based on physical blockage and chemical interaction, effectively suppressing the migration of soluble polysulfides. The Li/S cell sandwiching the as-prepared GPE exhibits remarkably improved electrochemical performance.


Lithium sulfur battery P (VDF-HFP) PVP Gel polymer electrolyte Polymer membrane Polysulfide 



This work was financially supported by National Natural Science Foundation of China (No. 51704222, 51604221 and 51574191), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2016JQ5040), and Special Scientific Research Program of Education Department of Shaanxi in China (No. 17JK0427).


  1. 1.
    Kang W, Deng N, Ju J, Li Q, Wu D, Ma X, Li L, Naebe M, Cheng B (2016) A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale 8:16541–16588CrossRefGoogle Scholar
  2. 2.
    Ogoke O, Wu G, Wang X, Casimir A, Ma L, Wu T, Lu J (2017) Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries. J Mater Chem A 5:448–469CrossRefGoogle Scholar
  3. 3.
    Seh ZW, Sun Y, Zhang Q, Cui Y (2016) Designing high-energy lithium-sulfur batteries. Chem Soc Rev 45:5605–5634CrossRefGoogle Scholar
  4. 4.
    Yuan Y, Lu H, Fang Z, Chen B (2016) Preparation and performance of sulfur–carbon composite based on hollow carbon nanofiber for lithium-sulfur batteries. Ionics 22:1509–1515CrossRefGoogle Scholar
  5. 5.
    Lu H, Zhang K, Yuan Y, Qin F, Zhang Z, Lai Y, Liu Y (2015) Lithium/sulfur batteries with mixed liquid electrolytes based on ethyl 1,1,2,2-tetrafluoroethyl ether. Electrochim Acta 161:55–62CrossRefGoogle Scholar
  6. 6.
    Lu H, Wang J, Li T, Du H, Yi D, Fang J, Hong B (2017) Improved performance of lithium-sulfur battery by a functional separator design. J Solid State Electrochem 22:953–958CrossRefGoogle Scholar
  7. 7.
    Li T, Yuan Y, Hong B, Cao H, Zhang K, Lai Y, Liu Y, Huang Z (2017) Hybrid polyacrylamide/carbon coating on sulfur cathode for advanced lithium sulfur battery. Electrochim Acta 244:192–198CrossRefGoogle Scholar
  8. 8.
    Agostini M, Lim DH, Sadd M, Fasciani C, Navarra MA, Panero S, Brutti S, Matic A, Scrosati B (2017) Stabilizing the performance of high-capacity sulfur composite electrodes by a new gel polymer electrolyte configuration. Chem Sus Chem 10:3490–3496CrossRefGoogle Scholar
  9. 9.
    Choudhury S, Saha T, Naskar K, Stamm M, Heinrich G, Das A (2017) A highly stretchable gel-polymer electrolyte for lithium-sulfur batteries. Polymer 112:447–456CrossRefGoogle Scholar
  10. 10.
    Xia Y, Wang X, Xia X, Xu R, Zhang S, Wu J, Liang Y, Gu C, Tu J (2017) A newly designed composite gel polymer electrolyte based on poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries. Chem Eur J 23:15203–15209CrossRefGoogle Scholar
  11. 11.
    Kim J-K (2017) Hybrid gel polymer electrolyte for high-safety lithium-sulfur batteries. Mater Lett 187:40–43CrossRefGoogle Scholar
  12. 12.
    Jeddi K, Ghaznavi M, Chen P (2013) A novel polymer electrolyte to improve the cycle life of high performance lithium–sulfur batteries. J Mater Chem A 1:2769–2772CrossRefGoogle Scholar
  13. 13.
    Ai G, Dai Y, Ye Y, Mao W, Wang Z, Zhao H, Chen Y, Zhu J, Fu Y, Battaglia V, Guo J, Srinivasan V, Liu G (2015) Investigation of surface effects through the application of the functional binders in lithium sulfur batteries. Nano Energy 16:28–37CrossRefGoogle Scholar
  14. 14.
    Yuan Y, Chen B, Chen Y (2013) Preparation and characterization of polymer electrolyte P (VDF-HFP)/PVP by solvent evaporation method. The Chinese Journal of Nonferrous Metals 23:3179–3183 (in Chinese)Google Scholar
  15. 15.
    Seh ZW, Zhang Q, Li W, Zheng G, Yao H, Cui Y (2013) Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem Sci 4:3673–3677CrossRefGoogle Scholar
  16. 16.
    Bandara T, Weerasinghe A, Dissanayake M, Senadeera G, Furlani M, Albinsson I, Mellander B (2018) Characterization of poly (vinylidene fluoride-co-hexafluoropropylene) (P (VDF-HFP)) nanofiber membrane based quasi solid electrolytes and their application in a dye sensitized solar cell. Electrochim Acta 266:276–283CrossRefGoogle Scholar
  17. 17.
    Yang B, Li X, Guo H, Wang Z, Huang S, Li Y (2012) Preparation of properties of PVP/P (VDF-HFP) microporous polymer electrolyte. Journal of Central South University (Science and Technology) 43:1628–1633 (in Chinese)Google Scholar
  18. 18.
    Zhao Y, Zhang Y, Bakenov Z, Chen P (2013) Electrochemical performance of lithium gel polymer battery with nanostructured sulfur/carbon composite cathode. Solid State Ionics 234:40–45CrossRefGoogle Scholar
  19. 19.
    Xiong S, Xie K, Blomberg E, Jacobsson P, Matic A (2014) Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries. J Power Sources 252:150–155CrossRefGoogle Scholar
  20. 20.
    Xiong S, Xie K, Diao Y, Hong X (2014) Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries. J Power Sources 246:840–845CrossRefGoogle Scholar
  21. 21.
    Zhang K, Qin F, Lai Y, Li J, Lei X, Wang M, Lu H, Fang J (2016) Efficient fabrication of hierarchically porous graphene-derived aerogel and its application in lithium sulfur battery. ACS Appl Mater Interfaces 8:6072–6081CrossRefGoogle Scholar
  22. 22.
    Su Y-S, Manthiram A (2012) A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium–sulfur batteries. Electrochim Acta 77:272–278CrossRefGoogle Scholar
  23. 23.
    Jin J, Wen Z, Liang X, Cui Y, Wu X (2012) Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery. Solid State Ionics 225:604–607CrossRefGoogle Scholar
  24. 24.
    Jeddi K, Sarikhani K, Qazvini NT, Chen P (2014) Stabilizing lithium/sulfur batteries by a composite polymer electrolyte containing mesoporous silica particles. J Power Sources 245:656–662CrossRefGoogle Scholar
  25. 25.
    Li W, Pang Y, Zhu T, Wang Y, Xia Y (2017) A gel polymer electrolyte based lithium-sulfur battery with low self-discharge. Solid State Ionics 318:82–87. CrossRefGoogle Scholar
  26. 26.
    Liu M, Zhou D, He Y-B, Fu Y, Qin X, Miao C, Du H, Li B, Yang Q-H, Lin Z, Zhao TS, Kang F (2016) Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22:278–289CrossRefGoogle Scholar
  27. 27.
    Lu H, Yuan Y, Hou Z, Lai Y, Zhang K, Liu Y (2016) Solvate ionic liquid electrolyte with 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether as a support solvent for advanced lithium–sulfur batteries. RSC Adv 6:18186–18190CrossRefGoogle Scholar
  28. 28.
    Yang W, Yang W, Feng J, Ma Z, Shao G (2016) High capacity and cycle stability rechargeable lithium–sulfur batteries by sandwiched gel polymer electrolyte. Electrochim Acta 210:71–78CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Metallurgical EngineeringXi’an University of Architecture and TechnologyXi’anChina
  2. 2.School of Materials Science and EngineeringXi’an University of Science and TechnologyXi’anChina

Personalised recommendations