, Volume 25, Issue 2, pp 685–695 | Cite as

Facile one-step hydrothermal synthesis of PEDOT:PSS/MnO2 nanorod hybrids for high-rate supercapacitor electrode materials

  • Chengjie Yin
  • Hongming ZhouEmail author
  • Jian LiEmail author
Original Paper


Poly(3,4-ethylenedioxythiophene)–polystyrenesulfonate and manganese oxide (PEDOT:PSS/MnO2) hybrids were prepared via a facile solvothermal method coupled with an oxidative polymerization route. The effects of the reaction temperature and the KMnO4-to-organic monomer (3,4-ethylenedioxythiophene, EDOT) ratio on the morphology, structure, and electrochemical properties of the materials were investigated. The optimized composites comprised homogeneous nanorod-like structures and exhibited overwhelmingly high conductivity (36 S cm−1) and superior supercapacitance—more specifically, they exhibited high-rate capability. The electrochemical properties of the nanocomposites were investigated using cyclic voltammetry and galvanostatic charge–discharge cycling. The prepared hybrids showed a high capacitance of 365.5 F g−1 at a current density of 1 A g−1, a good rate performance of 325.4 F g−1 at 20 A g−1 (capacitance retention of 89%), and excellent cycling stability with approximately 80% capacitance retention after 2000 cycles at a current density of 5 A g−1 in a 6 M KOH aqueous electrolyte.


Manganese dioxide PEDOT:PSS High-rate performance Synthesis Supercapacitor 


Funding information

This work was financially supported by Hunan Science and Technology Project, Grant No. 2013GK3002, and Science and Technology Project of Changsha (No. K1202039-11).

Supplementary material

11581_2018_2680_MOESM1_ESM.dtd (42 kb)
ESM 1 (DTD 42 kb)


  1. 1.
    Chen S, Mani V, Saraswathi R (2014) Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review. Int J Electrochem Sci 9:4072–4805Google Scholar
  2. 2.
    Zhang C, Deng YD, Hu WB, Qiao JL, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539CrossRefGoogle Scholar
  3. 3.
    Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H (2017) High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv Mater 29:1700804CrossRefGoogle Scholar
  4. 4.
    Jabeen N, Xia Q, Savilov SV, Aldoshin SM, Yu Y, Xia H (2016) Enhanced pseudocapacitive performance of α-MnO2 by cation preinsertion. ACS Appl Mater Interfaces 8:33732–33740CrossRefGoogle Scholar
  5. 5.
    Huang L, Chen DC, Ding YD, Feng S, Wang ZL, Liu ML (2013) Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139CrossRefGoogle Scholar
  6. 6.
    Gumby J, Taberna PL, Simon P, Chesneau JFM (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116CrossRefGoogle Scholar
  7. 7.
    Yang J, Yu C, Fan X, Liang S, Li S, Huang H, Ling Z, Hao C, Qiu J (2016) Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ Sci 9:1299–1307CrossRefGoogle Scholar
  8. 8.
    He XJ, Li XH, Ma H, Han JH, Zhang H, Yu C, Xiao N, Qiu JS (2017) ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. J Power Sources 340:183–191CrossRefGoogle Scholar
  9. 9.
    Xia H, Hong C, Shi X, Li B, Yuan G, Yao Q, Xie J (2015) Hierarchical heterostructures of Ag nanoparticles decorated MnO2 nanowires as promising electrodes for supercapacitors. J Mater Chem A 3:1216–1221CrossRefGoogle Scholar
  10. 10.
    Duay J, Sherrill SA, Gui Z, Gillette E, Lee SB (2013) Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7:1200–1214CrossRefGoogle Scholar
  11. 11.
    Du X, Wang CY, Chen MM, Jiao Y, Wang J (2009) Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J Phys Chem C 113:2643–2646CrossRefGoogle Scholar
  12. 12.
    Xia XH, Tu JP, Mai YJ, Wang XL, Gu GD, Zhao XB (2011) Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J Mater Chem 21:9319–9325CrossRefGoogle Scholar
  13. 13.
    Yuan CZ, Zhang XG, Su LH, Gao B, Shen LF (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19:5772–5777CrossRefGoogle Scholar
  14. 14.
    Zhang GQ, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979CrossRefGoogle Scholar
  15. 15.
    Jurewicz K, Delpeux S, Bertagna V, Béguin F, Frackowiak E (2001) Supercapacitors from nanotubes/polypyrrole composites. Chem Phys Lett 347:36–40CrossRefGoogle Scholar
  16. 16.
    Ryu KS, Kim KM, Park NG, Park YJ, Chang SH (2002) Symmetric redox supercapacitor with conducting polyaniline electrodes. J Power Sources 103:305–309CrossRefGoogle Scholar
  17. 17.
    Laforgue A (2011) All-textile flexible supercapacitors using electrospun poly (3, 4-ethylenedioxythiophene) nanofibers. J Power Sources 196:559–564CrossRefGoogle Scholar
  18. 18.
    Kumar A, Welsh DM, Morvant MC, Piroux P, Abboud KA, Reynolds JR (1998) Conducting poly (3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios. Chem Mater 10:896–902CrossRefGoogle Scholar
  19. 19.
    Liu DY, Reynolds JR (2010) Dioxythiophene-based polymer electrodes for supercapacitor modules. ACS Appl Mater Interfaces 2:3586–3593CrossRefGoogle Scholar
  20. 20.
    Zhao LP, Yang CM, Shen P, Wang ZY, Deng CF, Yang LS, Li JH, Qian D (2017) A brand-new strategy for remarkable improvements of electrochemical performances on conducting polymer-based flexible supercapacitors by coating Mo-Ni-P. Electrochim Acta 249:318–327CrossRefGoogle Scholar
  21. 21.
    Wang HG, Lu ZG, Qian D, Li YJ, Zhang W (2007) Single-crystal α-MnO2 nanorods: synthesis and electrochemical properties. Nanotechnology 18:115616CrossRefGoogle Scholar
  22. 22.
    Chen S, Zhu JW, Wu XD, Han QF, Wang X (2010) Graphene oxide−MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830CrossRefGoogle Scholar
  23. 23.
    Bélanger D, Brousse L, Long JW (2008) Manganese oxides: battery materials make the leap to electrochemical capacitors. Electrochem Soc Interface 17:49Google Scholar
  24. 24.
    Kim JH, Lee KH, Overzet LJ, Lee GS (2011) Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnOx composites for high-performance energy storage devices. Nano Lett 11:2611–2617CrossRefGoogle Scholar
  25. 25.
    Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett 8:2664–2668CrossRefGoogle Scholar
  26. 26.
    Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006CrossRefGoogle Scholar
  27. 27.
    Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G (2013) Ltrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett 13:2151–2157CrossRefGoogle Scholar
  28. 28.
    Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375CrossRefGoogle Scholar
  29. 29.
    He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2012) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182CrossRefGoogle Scholar
  30. 30.
    Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23:2076–2081CrossRefGoogle Scholar
  31. 31.
    Yan J, Khoo E, Sumboja A, Lee PS (2010) Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 4:4247–4255CrossRefGoogle Scholar
  32. 32.
    Yu Z, Thomas J (2014) Energy storing electrical cables: integrating energy storage and electrical conduction. Adv Mater 26:4297–4285Google Scholar
  33. 33.
    Kim YH, Sachse C, Machala ML, May C, Meskamp LM, Leo K (2011) Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv Funct Mater 21:1076–1081CrossRefGoogle Scholar
  34. 34.
    Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JE (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481–494CrossRefGoogle Scholar
  35. 35.
    Liu R, Cho SI, Lee SB (2008) Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology 19:215710CrossRefGoogle Scholar
  36. 36.
    Tang P, Han L, Zhang L (2014) Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. ACS Appl Mater Interfaces 6:10506–10515CrossRefGoogle Scholar
  37. 37.
    Su ZJ, Yang C, Xu CJ, Wu HY, Zhang ZX, Liu T, Zhang C, Yang QH, Li BH, Kang FYK (2013) Co-electro-deposition of the MnO2–PEDOT: PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. J Mater Chem A 1:12432–12440CrossRefGoogle Scholar
  38. 38.
    Yu ZN, Li C, Abbitt D, Thomas J (2014) Flexible, sandwich-like Ag-nanowire/PEDOT: PSS-nanopillar/MnO2 high performance supercapacitors. J Mater Chem A 2:10923–10929CrossRefGoogle Scholar
  39. 39.
    Liu R, Lee SB (2008) MnO2/poly (3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc 130:2942–2943CrossRefGoogle Scholar
  40. 40.
    Duay J, Gillette E, Liu R, Lee SB (2012) Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays. Phys Chem Chem Phys 14:3329–3337CrossRefGoogle Scholar
  41. 41.
    Liu R, Duay J, Lee SB (2011) Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/poly(3,4-ethylenedioxythiophene) nanowires. ACS Nano 5:5608–5619CrossRefGoogle Scholar
  42. 42.
    Liu R, Duay J, Lee SB (2010) Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 4:4299–4307CrossRefGoogle Scholar
  43. 43.
    Mai LQ, Dong F, Xu X, Luo YZ, An QY, Zhao YL, Pan J, Yang JN (2013) Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene) & MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett 13:740–745CrossRefGoogle Scholar
  44. 44.
    Zhang L, Peng H, Kilmartin PA, Soeller C, Travas-Sejdic J (2008) Poly(3,4-ethylenedioxythiophene) and polyaniline bilayer nanostructures with high conductivity and electrocatalytic activity. Macromolecules 41:7671–7678CrossRefGoogle Scholar
  45. 45.
    Wang J, Xu YL, Chen X, Du XF (2007) Electrochemical supercapacitor electrode material based on poly (3, 4-ethylenedioxythiophene)/polypyrrole composite. J Power Sources 163:1120–1125CrossRefGoogle Scholar
  46. 46.
    Yin CJ, Yang CM, Jiang M, Deng CF, Yang LS, Li JH, Qian D (2016) A novel and facile one-pot solvothermal synthesis of PEDOT−PSS/Ni−Mn−Co−O hybrid as an advanced supercapacitor electrode material. ACS Appl Mater Interfaces 8:2741–2752CrossRefGoogle Scholar
  47. 47.
    Zhou J, Ventura IA, Lubineau G (2014) Probing the role of PEDOT: PSS coated (MWCNTs) in thermal and mechanical properties of polycarbonate nanocomposites. Ind Eng Chem Res 53:3539–3549CrossRefGoogle Scholar
  48. 48.
    Ma ZP, Shao GJ, Fan YQ, Wang GL, Shen DJ (2016) Construction of hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core–shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl Mater Interfaces 8:9050–9058CrossRefGoogle Scholar
  49. 49.
    Cui LH, Cui J, Zheng HM, Wang Y, Wu YC (2017) Construction of NiO/MnO2/CeO2 hybrid nanoflake arrays as platform for electrochemical energy storage. J Power Sources 361:310–317CrossRefGoogle Scholar
  50. 50.
    Sharma PK, Zhai L (2009) Electrochim acta multiwall carbon nanotube supported poly(3,4-ethylenedioxythiophene)/manganese oxide nano-composite electrode for super-capacitors. 54:7148-7155Google Scholar
  51. 51.
    Yang YJ, Yuan WT, Li SB, Yang XJ, Xu JH, Jiang YD (2015) Manganese dioxide nanoparticle enrichment in porous conducting polymer as high performance supercapacitor electrode materials. Electrochim Acta 165:323–329CrossRefGoogle Scholar
  52. 52.
    Tang PY, Zhao YQ, Xu CL (2013) Step-by-step assembled poly (3, 4-ethylenedioxythiophene)/manganese dioxide composite electrodes: tuning the structure for high electrochemical performance. Electrochim Acta 89:300–309CrossRefGoogle Scholar
  53. 53.
    Qiu K, Lu Y, Zhang D, Cheng J, Yan H, Xu J, Liu X, Kim JK, Luo Y (2015) Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 11:687–696CrossRefGoogle Scholar
  54. 54.
    Zhang Z, Bao F, Zhang Y, Feng L, Ji Y, Zhang H, Sun Q, Feng S, Zhao X, Liu X (2015) Formation of hierarchical CoMoO4@MnO2 core–shell nanosheet arrays on nickel foam with markedly enhanced pseudocapacitive properties. J Power Sources 296:162–168CrossRefGoogle Scholar
  55. 55.
    Bao F, Zhang Z, Guo W, Liu X (2015) Facile synthesis of three dimensional NiCo2O4@MnO2 core–shell nanosheet arrays and its supercapacitive performance. Electrochim Acta 157:31–40CrossRefGoogle Scholar
  56. 56.
    Kumar A, Sanger A, Kumar A, Mishra YK, Chandra R (2016) Performance of high energy density symmetric supercapacitor based on sputtered MnO2 nanorods. ChemistrySelect 1:3885–3891CrossRefGoogle Scholar
  57. 57.
    Ranjusha R, Nair AS, Ramakrishna S, Anjali P, Sujith K, Subramanian KRV, Balakrishnan A (2012) J Mater Chem 38:20465CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Hunan Zhengyuan Institute for Energy Storage Materials and DevicesChangshaChina

Personalised recommendations