Advertisement

Ionics

, Volume 25, Issue 2, pp 835–847 | Cite as

Enhanced properties of Gamma irradiated nano spinels containing cobalt and alumnium ions : Effect of Gamma radiation on structure, electrical, magnetic and thermal stability properties

  • Emad M. MasoudEmail author
  • Eman S. Abdelazeem
Original Paper
  • 231 Downloads

Abstract

Unirradiated and irradiated nano spinels (CoCo0.5Al1.5O4, Co3O4) were prepared. All investigated samples were characterized using different techniques such as X-ray diffraction (XRD), Fourier-transform infrared (FTIR) analysis, thermal gravimetric analysis (TG), and transmission electron microscope (TEM). XRD and FTIR analyses confirmed the formation of spinel structure in addition to the effect of gamma radiation on the crystalline structure of unirradiated nano spinels. TG analysis showed that the irradiated nano spinels have more thermal stability than unirradiated ones. As an obvious effect of gamma radiation on structure, the irradiated nano spinel sample showed a different particle morphology compared to the unirradiated one. An obvious enhancement of both electrical and magnetic properties was observed for the irradiated nano spinel samples. The irradiated nano spinel sample of cobalt oxide (Co3O4) showed the highest AC conductivity value (2.16 × 10−7 Ω−1 cm−1, at room temperature). In contrast, the irradiated nano spinel sample of cobalt aluminate (CoCo0.5Al1.5O4) showed the highest saturation magnetization (Ms) value (2.12 emu g −1, at room temperature). All results were collected and discussed.

Graphical abstract

Irradiated nano spinel sample (CoCo0.5Al1.5O4) with high saturation magnetization value.

Keywords

Gamma radiation Irradiated nano spinels Magnetic properties Electrical properties 

Notes

Funding information

The first and corresponding author of this research paper received financial support from Benha University (http://www.bu.edu.eg/en/), Egypt, to complete this research work.

References

  1. 1.
    Limaye MV, Singh SB, Date SK, Kothari D, Reddy VR, Gupta A, Sathe V, Choudhary J, Kulkarni SK (2009) High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J Phys Chem B 113:9070–9076CrossRefGoogle Scholar
  2. 2.
    Reddy MV, Beichen Z, Jia’en Nicholette L, Kaimeng Z, Chowdari BVR (2011) Molten Salt Synthesis and Its Electrochemical Characterization of Co3O4 for Lithium Batteries. Electrochem Solid-State Lett 14:A79CrossRefGoogle Scholar
  3. 3.
    Reddy MV, Kenrick KYH, Wei TY, Chowdar BVR (2011) Nano-ZnCo2O4 Material Preparation by Molten Salt Method and Its Electrochemical Properties for Lithium Batteries. J Electrochem Soc 158(12):A1423CrossRefGoogle Scholar
  4. 4.
    Reddy MV, Cai Yu,Fan Jiahuan,Kian Ping Loh and B. V. R. Chowdari, Molten salt synthesis and energy storage studies on CuCo2O4 and CuO·Co3O4. RSC Adv 2(2012)961Google Scholar
  5. 5.
    Reddy MV, Xu Y, Rajarajan V, Ouyang T, Chowdari BVR (2015) Template Free Facile Molten Synthesis and Energy Storage Studies on MCo2O4 (M = Mg, Mn) as Anode for Li-Ion Batteries. ACS Sustain Chem Eng 3(12):3035–3042CrossRefGoogle Scholar
  6. 6.
    ShahulHameed A, Bahiraei H, Reddy MV, Shoushtari MZ, Vittal JJ, Ong CK, Chowdari BVR (2014) Lithium Storage Properties of Pristine and (Mg, Cu) Codoped ZnFe2O4 Nanoparticles. ACS Appl Mater Interfaces 6(13):10744CrossRefGoogle Scholar
  7. 7.
    Darbar D, Reddy MV, Sundarrajan S, Pattabiraman R, Ramakrishna S, Chowdari BVR (2016) Anodic electrochemical performances of MgCo2O4 synthesized by oxalate decomposition method and electrospinning technique for Li-ion battery application. Mater Res Bull 73:369CrossRefGoogle Scholar
  8. 8.
    Reddy MV, Quan CY, Teo KW, Ho LJ, Chowdari BVR (2015) Mixed Oxides, (Ni1–xZnx)Fe2O4 (x = 0, 0.25, 0.5, 0.75, 1): Molten Salt Synthesis, Characterization and Its Lithium-Storage Performance for Lithium Ion Batteries. J Phys Chem C 119(9):4709CrossRefGoogle Scholar
  9. 9.
    Bid S, Pradan SK (2003) Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis. Mater Chem Phys 82:27–37CrossRefGoogle Scholar
  10. 10.
    Ayala RE, Marsh DW (1991) Characterization and long-range reactivity of zinc ferrite in high-temperature desulfurization processes. Ind Chem Res 30:55–60CrossRefGoogle Scholar
  11. 11.
    O.V. Andrushkova, V.A. Ushakov, V.A. Polubojarov, E.G. Avvakumov, Sibirskii Khim Zh 3 (1992) Effect Of Mechanical Activation On Cobalt Oxides And On Synthesis Of Cobalt Aluminate.Sibirskii Khimicheskii Zhurnal 97Google Scholar
  12. 12.
    Antolini E, Zhecheva E (1998) Lithiation of spinel cobalt oxide by solid state reaction of Li2CO3 and Co3O4: an EPR study. Mater Lett 35:380–382CrossRefGoogle Scholar
  13. 13.
    Baydi ME, Poillerat G, Rehspringer JL, Gautier JL, Koenig JF, Chartier P (1994) A sol-gel route for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium. J Solid-State Chem 109:281–288CrossRefGoogle Scholar
  14. 14.
    Chemlal S, Larbot A, Persin M, Sarrazin J, Sghyar M, Rafiq M (2000) Cobalt spinel CoAl2O4 via sol-gel process: elaboration and surface properties. Mater Res Bull 35:2515–2523CrossRefGoogle Scholar
  15. 15.
    Cho WS, Kakihana M (1999) Crystallization of ceramic pigment CoAl2O4 nanocrystals from Co–Al metal organic precursor. J Alloys Compd 287:87–90CrossRefGoogle Scholar
  16. 16.
    Buxbaum G (1993) Industrial inorganic pigments, 1st edn. VCH, Weinheim, p 85Google Scholar
  17. 17.
    Ahmed MA, Ateia E, Salem FM (2007) The effect of Ti4+ ions and gamma radiation on the structure and electrical properties of Mg ferrite. J Mater Sci 42:3651–3660CrossRefGoogle Scholar
  18. 18.
    Rani NS, Sannappa J, Demappa T, Mahadevaiah D (2013) Gamma radiation induced conductivity control and characterization of structural and thermal properties of hydroxyl propyl methyl cellulose (HPMC) polymer complexed with sodium iodide (NaI). Adv Appl Sci Res 4:195–219Google Scholar
  19. 19.
    Arshak K, Korostynska O, Harris J, Morris D, Arshak A, Jafer E (2008) Properties of BGO thin films under the influence of gamma radiation. Thin Solid Films 516:1493–1498CrossRefGoogle Scholar
  20. 20.
    Holmes-Siedle AG, Adams L (1993) Handbook of radiation effects. Oxford University Press, Oxford, New YorkGoogle Scholar
  21. 21.
    Masoud EM, EL-Bellihi A-A, Bayoumy WA, Abdelazeem ES (2017) Structural, optical, magnetic, and electrical properties of nanospinels containing different molar ratios of cobalt and aluminum ions. Ionics 23:2417–2427CrossRefGoogle Scholar
  22. 22.
    Mahmoud WE, El-Mallah H (2009) Synthesis and characterization of PVP-capped CdSe nanoparticles embedded in PVA matrix for photovoltaic application. J Phys D Appl Phys 42:035502CrossRefGoogle Scholar
  23. 23.
    J. Chandradass, M. Balasubramanian, Ki Hyeon Kim, Alloys Compd, 506 (2010) 395–399, Size effect on the magnetic property of CoAl2O4 nanopowders prepared by reverse micelle processingGoogle Scholar
  24. 24.
    Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. John Wiley & Sons, New YorkGoogle Scholar
  25. 25.
    Schrader B (ed) (1995) Infrared Raman spectroscopy: methods and applications. VCH, WeinheimGoogle Scholar
  26. 26.
    Farag ISA, Ahmad MA, Hammad SM, Moustafa AM (2001) Study of cation distribution in Cu0. 7 (Zn0. 3− xMgx) Fe1.7Al0.3O4 by X-ray diffraction using rietveld method. Egypt J Solids 24:215Google Scholar
  27. 27.
    Iqbal MJ, Farooq S (2007) Effect of doping of divalent and trivalent metal ions on the structural and electrical properties of magnesium aluminate. Mater Sci Eng B 136:140–147CrossRefGoogle Scholar
  28. 28.
    Hong YS, Ho CM, Hsu HY, Liu CT (2004) Synthesis of nanocrystalline Ba(MnTi)xFe12−2xO19 powders by the sol–gel combustion method in citrate acid–metal nitrates system (x=0, 0.5, 1.0, 1.5, 2.0). J Magn Magn Mater 279:401–410CrossRefGoogle Scholar
  29. 29.
    Barakat MM, Henaish MA, Olofa SA, Tawfik A (1991) Sintering behaviour of the spinel ferrite system Ni0.65Zn0.35Fe2−xCuxO4. J Therm Anal Calorium 37:241–248CrossRefGoogle Scholar
  30. 30.
    Sattar AA (2004) Physical, Magnetic and Electrical Properties of Ga Substituted Mn-Ferrites. Egypt J Solids 27:99Google Scholar
  31. 31.
    Ahmed MA, Okasha N, Oaf M, Kershi RM (2007) The role of Mg substitution on the microstructure and magnetic properties of Ba Co Zn W-type hexagonal ferrites. J Magn Magn Mater 314:128–134CrossRefGoogle Scholar
  32. 32.
    Zayat M, Levy D (2000) Blue CoAl2O4 particles prepared by the sol−gel and citrate−gel methods. Chem Mater 12:2763–2769CrossRefGoogle Scholar
  33. 33.
    Kim KJ, Kim HK, Park YR, Ahn GY, Kim CS, Park JY (2006) Hyperfine Interactions 169:1363–1369CrossRefGoogle Scholar
  34. 34.
    Stangar UL, Orel B, Krajnc M (2003) J Sol–Gel Sci Technol 26:771–775CrossRefGoogle Scholar
  35. 35.
    Gritsyna VT, Afanasyev-Charkin IV, Kobyakov VA (1999) Structure and Electronic States of Defects in Spinel of Different Compositions MgO·nAl2O3:Me. J Am Ceram Soc, 82(12);3365–3373Google Scholar
  36. 36.
    Liu L, Huang Y, Li Y, Wu M, Fang L, Hu C, Wang Y (2012) Oxygen-vacancy-related high-temperature dielectric relaxation and electrical conduction in 0.95K0.5Na0.5NbO3–0.05BaZrO3ceramic. Physica B (407):136–139Google Scholar
  37. 37.
    Li Y, Liang F, Liu L, Huang Y, Hu C (2012) Giant dielectric response and charge compensation of Li- and Co-doped NiO ceramics. Mater Sci Eng B 177:673–677CrossRefGoogle Scholar
  38. 38.
    Sun X, Deng J, Liu L, Liu S, Shi D, Fang L, Elouadi B (2016) Dielectric properties of BiAlO3-modified (Na, K, Li)NbO3 lead-free ceramics. Mater Res Bull 73:437–445CrossRefGoogle Scholar
  39. 39.
    Liu L, Elouadi B (2014) Oxygen vacancy-related dielectric relaxation and electrical conductivity in La-doped Ba(Zr0.9Ti0.1)O3ceramics. J Mater Sci Mater Electron (25):4058–4065Google Scholar
  40. 40.
    Liu L, Shi D, Fan L, Chen J, Li G, Fang L, Elouadi B (2015) Ferroic properties of Fe-doped and Cu-doped K0.45Na0.49Li0.06NbO3 ceramics. J Mater Sci Mater Electron 26:6592–6598CrossRefGoogle Scholar
  41. 41.
    Keer HV, Bodas MG, Bhaduri A, Biswas AB (1975) Studies on Mn3O4 MgAl2O4 system. J Inorg Nucl Chem 37:1605–1607Google Scholar
  42. 42.
    Kao KC, Hwang W (1981) Electrical transport in solid. Pergamon PressGoogle Scholar
  43. 43.
    Emad M. Masoud, A.-A. El-Bellihi, W.A. Bayoumy, M.A. Mousa, J Alloys Compd 575 (2013) 223–228, Organic–inorganic composite polymer electrolyte based on PEO–LiClO4 and nano-Al2O3 filler for lithium polymer batteries: Dielectric and transport propertiesGoogle Scholar
  44. 44.
    Emad M. Masoud, Citrated porous gel copolymer electrolyte composite for lithium ion batteries application: An investigation of ionic conduction in an optimized crystalline and porous structure. Alloys Compd 651(2015)157–163Google Scholar
  45. 45.
    Masoud EM, Khairy M, Mousa MA (2013) Electrical properties of fast ion conducting silver based borate glasses: Application in solid battery. Alloys Compd 569:150–155CrossRefGoogle Scholar
  46. 46.
    Masoud EM, Mousa MA (2015) Silver-doped silver vanadate glass composite electrolyte: structure and an investigation of electrical properties. Ionics 21:1095–1103CrossRefGoogle Scholar
  47. 47.
    ElBellihi AA, Bayoumy WA, Masoud EM, Mousa MA (2012) Preparation, characterizations and conductivity of composite polymer electrolytes based on PEO -LiClO4 and nano ZnO filler. Bull Korean Soc 33(9):2949–2954CrossRefGoogle Scholar
  48. 48.
    Masoud EM, El-Bellihi A-A, Bayoumy WA, Mousa MA (2013) Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO–LiClO4 composite. Mater Res Bull 48(3):1148–1154CrossRefGoogle Scholar
  49. 49.
    Masoud EM (2016) Nano lithium aluminate filler incorporating gel lithium triflate polymer composite: preparation, characterization and application as an electrolyte in lithium ion batteries. Polym Test 56:65–73CrossRefGoogle Scholar
  50. 50.
    Masoud EM, Hassan ME, Wahdaan SE, Elsayed SR, Elsayed SA (2016) Gel P (VdF/HFP) / PVAc / lithium hexafluorophosphate composite electrolyte containing nano ZnO filler for lithium ion batteries application: effect of nano filler concentration on structure, thermal stability and transport properties. Polym Test 56:277–286CrossRefGoogle Scholar
  51. 51.
    Upadhyay T, Upadhyay RV, Mehta RV (1997) Characterization of a temperature-sensitive magnetic fluid. Phys Rev B 55:5585–5588CrossRefGoogle Scholar
  52. 52.
    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722CrossRefGoogle Scholar
  53. 53.
    Suard E et al (2000) Charge ordering in the layered Co-based perovskite HoBaCo2O5. Phys Rev J 61B:R11871CrossRefGoogle Scholar
  54. 54.
    Fauth F et al (2001) Interplay of structural, magnetic and transport properties in thelayered Co-based perovskite LnBaCo 2 O 5 (Ln = Tb, Dy, Ho). Eur Phys J 21B:163CrossRefGoogle Scholar
  55. 55.
    Respaud M, Broto JM, Rakoto H, Fert AR, Thomas L, Barbara B, Verelst M, Snoeck E, Lecante P, Mosset A, Osuna J, Ould Ely T, Amiens C, Chaudret B (1998) Phys Rev Lett 57:2925–2935Google Scholar
  56. 56.
    Bodker F, Morup S, Linderoth S (1994) Surface effects in metallic iron nanoparticles. Phys Rev Lett 72:282–285CrossRefGoogle Scholar
  57. 57.
    Kumar S, Singh V, Aggarwal S, Mandal UK, Kotnala RK (2010) Influence of Processing Methodology on Magnetic Behavior of Multicomponent Ferrite Nanocrystals. J Phys Chem C.  https://doi.org/10.1021/jp911586d
  58. 58.
    Chandradassa J, Balasubramanianb M, Kima KH (2010) Size effect on the magnetic property of CoAl2O4 nanopowders prepared by reverse micelle processing. J Alloys Compd 506:395–399CrossRefGoogle Scholar
  59. 59.
    Ahmad J, Awan MQ, Mazhar ME, Ashiq MN (2011) Effect of substitution of Co2+ ions on the structural and electrical properties of nanosized magnesium aluminate. Physica B 406:254–258CrossRefGoogle Scholar
  60. 60.
    Harshit Agarwal, T.P. Yadav, O.N. Srivastava, M.A. Shaz, Ceram Int 43 (2017) Dielectric response and alternating current conductivity in (Co,Ni)Al2O4 nano-spinel. 16986–16992Google Scholar
  61. 61.
    Ozkaya T, Baykal A, Toprak MS, Koseog˘lu Y, Durmus Z (2009) Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization. J Magn Magn Mater 321:2145–2149CrossRefGoogle Scholar
  62. 62.
    Nirmalesh Naveen A, Selladurai S (2015) Tailoring structural, optical and magnetic properties of spinel type cobalt oxide (Co 3 O 4 ) by manganese doping. Physica B 457:251–262CrossRefGoogle Scholar
  63. 63.
    Bhatt AS, Bhat DK, Tai C-w, Santosha MS (2011) Microwave-assisted synthesis and magnetic studies of cobalt oxide nanoparticles. Mater Chem Phys 125:347–350CrossRefGoogle Scholar
  64. 64.
    Meher SK, Ranga Rao G (2011) Effect of Microwave on the Nanowire Morphology, Optical, Magnetic, and Pseudocapacitance Behavior of Co3O4. J Phys Chem C 115(51):25543–25556CrossRefGoogle Scholar
  65. 65.
    Pal J, Chauhan P (2010) Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Mater Charact 61:575–579CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceBenha UniversityBenhaEgypt

Personalised recommendations