, Volume 25, Issue 2, pp 447–455 | Cite as

A novel and green synthesis of mixed phase CoO@Co3O4@C anode material for lithium ion batteries

  • Halil ŞahanEmail author
  • Hüseyin Göktepe
  • Süleyman Yıldız
  • Cafer Çaymaz
  • Şaban Patat
Original Paper


CoO composite materials had attracted wide attention due to their potential application in lithium ion batteries (LIBs). We report a green and novel solution method for making pristine Co3O4 and mixed phase CoO@Co3O4@C composite anode electrodes in LIBs. The anode materials characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD diffraction pattern reveals that composite anode contains as a major phase of CoO and small amounts of cubic Co3O4 and Co metal peaks are found as impurity phases. The SEM micrographs showed that CoO, Co3O4, and Co phases are distributed in amorphous carbon network. The electrochemical behavior of anodes material is investigated by galvanostatic discharge/charge measurements and cyclic voltammetry. The composite anode shows a reversible specific capacity approaching 447 ± 5 mAh g−1 after 10 cycles at 100 and 107 ± 5 mAh g−1 after 50 cycles at 500 mA g−1as well as improved cyclic stability and excellent rate capability. The enhancement of the electrochemical performance is attributed to the good electric contact between the particles, easier lithium ion diffusion, and suppression of volume change of anode.


Lithium ion batteries CoO Anode materials Capacity fade Green synthesis Electrochemical performance 


  1. 1.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  2. 2.
    Yan N, Hu L, Li Y, Wang Y, Zhong H, Hu X, Kong X, Chen Q (2012) Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J Phys Chem C 116(12):7227–7235CrossRefGoogle Scholar
  3. 3.
    Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19:2336–2340CrossRefGoogle Scholar
  4. 4.
    Xiang J, Tu J, Huang X, Yang Y (2008) A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries. J Solid State Electrochem 12:941–945CrossRefGoogle Scholar
  5. 5.
    Pan Q, Liu J (2009) Facile fabrication of porous NiO films for lithium-ion batteries with high reversibility and rate capability. J Solid State Electrochem 13:1591–1597CrossRefGoogle Scholar
  6. 6.
    Spinner JN, Zhang V, Mustain W (2014) Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM. J Mater Chem A2:1627–1630CrossRefGoogle Scholar
  7. 7.
    Wu FD, Wang Y (2011) Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries. J Mater Chem 21:6636–6641CrossRefGoogle Scholar
  8. 8.
    Sun YM, Hu XL, Luo X, Huang YH (2012) Ultrathin CoO/graphene hybridnanosheets: a highly stable anode material for lithium-ion batteries. J Phys Chem C 116:20794–20799CrossRefGoogle Scholar
  9. 9.
    Yao WL, Yang J, Wang JL, Tao LA (2008) Synthesis and electrochemical performance of carbon nanofiber-cobalt oxide composites. Electrochim Acta 53:7326–7330CrossRefGoogle Scholar
  10. 10.
    Yao WL, Yang J, Wang JL, Nuli Y (2008) Multilayered cobalt oxide platelets for negative electrode material of a lithium-ion battery. J Electrochem Soc 155:H903–H908CrossRefGoogle Scholar
  11. 11.
    Wang GX, Chen Y, Konstantinov K, Lindsay M, Liu HK, Dou SX (2002) Investigation of cobalt oxides as anode materials for Li-ion batteries. J Power Sources 109:142–147CrossRefGoogle Scholar
  12. 12.
    Tummala R, Guduru RK, Mohanty PS (2012) Binder free, porous and nanostructured Co3O4 anode for Li-ion batteries from solution precursor plasma deposition. J Power Sources 199:270–277CrossRefGoogle Scholar
  13. 13.
    Reddy MV, SubbaRao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRefGoogle Scholar
  14. 14.
    Wang ZY, Madhavi S, Lou XV (2012) Ultralong alpha-MoO3 nanobelts: synthesis and effect of binder choice on their lithium storage properties. J Phys Chem C 116:12508–12513CrossRefGoogle Scholar
  15. 15.
    Guo H, Mao R, Yang XJ, Wang SX, Chen J (2012) Hollow nanotubular SnO2 with improved lithium storage. J Power Sources 219:280–284CrossRefGoogle Scholar
  16. 16.
    Xie D, Yuan WW, Dong ZM, Su QM, Zhang J, Du HG (2013) Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance. Electrochim Acta 92:87–92CrossRefGoogle Scholar
  17. 17.
    Zhang GH, Chen YJ, Qu BH, Hu LL, Mei L, Lei DN, Li Q, Chen LB, Li OH, Wang TH (2012) Synthesis of mesoporous NiO nanospheres as anode materials for lithium ion batteries. Electrochim Acta 80:140–147CrossRefGoogle Scholar
  18. 18.
    Zhou YN, Li VX, Fu ZV (2012) Electrochemical reactivity of nanocomposite ZnO-Se for lithium-ion batteries. Electrochim Acta 59:435–440CrossRefGoogle Scholar
  19. 19.
    Cherian CT, Sundaramurthy J, Reddy MV, Kumar PS, Mani K, Pliszka D, Sow SM, Chowdari BVR (2013) Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS App Mater Interfaces 5(20):9957–9963CrossRefGoogle Scholar
  20. 20.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499CrossRefGoogle Scholar
  21. 21.
    Zhang M, Jia MQ, Jin YH, Shi XR (2012) Synthesis and electrochemical performance of CoO/graphene nanocomposite as anode for lithium ion batteries. App Surf Sci 263:573–578CrossRefGoogle Scholar
  22. 22.
    Peng CX, Chen BD, Qin Y, Yang SH, Li CZ, Zuo YH, Liu SY, Yang JH (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074–1081CrossRefGoogle Scholar
  23. 23.
    Wu ZS, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou GM, Li F, Cheng LM (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194CrossRefGoogle Scholar
  24. 24.
    Zhang M, Uchaker E, Hu S, Zhang Q, Wang T, Cao G, Li J (2013) CoO-carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties. Nanoscale 5:12342–12349CrossRefGoogle Scholar
  25. 25.
    Huang H, Zhu W, Tao X, Xia Y, Yu Z, Fang J, Gan Y, Zhang W (2012) Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl Mater Interfaces 4(11):5974–5980CrossRefGoogle Scholar
  26. 26.
    Binotto G, Larcher D, Prakash AS, Hegde MS, Tarascon JM (2007) Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders. Chem Mater 19(12):3032–3040CrossRefGoogle Scholar
  27. 27.
    Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775):885–888CrossRefGoogle Scholar
  28. 28.
    Li WY, Xu LN, Chen J (2005) Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater 15:851–857CrossRefGoogle Scholar
  29. 29.
    Li YG, Wu Y (2010) Critical role of screw dislocation in the growth of co(OH)2 nanowires as intermediates for Co3O4 nanowire growth. Chem Mater 22(19):5537–5542CrossRefGoogle Scholar
  30. 30.
    Reddy MV, Beichen Z, Loh KP, Chowdari BVR (2013) Facile synthesis of Co3O4 by molten salt method and its Li-storage performance. Cryst Eng Comm 15:3568–3574CrossRefGoogle Scholar
  31. 31.
    Yang R, Wang Z, Liu J, Chen L (2004) Nano Co3 O 4 particles embedded in porous hard carbon spherules as anode material for Li-ion batteries. Solid State Lett 7:A496–A499CrossRefGoogle Scholar
  32. 32.
    Varghese B, Teo CH, Zhu Y, Reddy MV, Chowdari VR, Wee AT, Tan BC, Lim CT, Sow CH (2007) Co3O4 nanostructures with different morphologies and their field-emission properties. Adv Funct Materv 17:1932–1939CrossRefGoogle Scholar
  33. 33.
    Reddy MV, Beichen Z, Nicholette LJ, Kaimenga Z, Chowdaria BVR (2011) Molten salt synthesis and its electrochemical characterization of Co3O4 for lithium batteries. Electrochem Solid State Lett 14(5):A79–A82CrossRefGoogle Scholar
  34. 34.
    Reddy MV, Prithvi Loh KP, Chowdari BVR (2014) Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. ACS Appl Mater Interfaces 6:680–690CrossRefGoogle Scholar
  35. 35.
    Yao W, Chen J, Cheng H (2011) Platelike CoO/carbon nanofiber composite electrode with improved electrochemical performance for lithium ion batteries. J Solid State Electrochem 15:183–188CrossRefGoogle Scholar
  36. 36.
    Berenguer R, Valdés-Solís T, Fuertes AB. Quijada C, Morallón E (2008) Cyanide and phenol oxidation on nanostructured Co3O4 electrodes prepared by different methods. J Electrochem Soc 155(7): K110–K115Google Scholar
  37. 37.
    Yang HM, Ouyang J, Tang AD (2007) Single step synthesis of high-purity CoO nanocrystals. J Phys Chem B 111:8006–8013CrossRefGoogle Scholar
  38. 38.
    Pramanik A, Maiti S, Sreemany S (2016) Electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life. J Nanopart Res 18:93–105CrossRefGoogle Scholar
  39. 39.
    Chen C, Huang M, Zhang H, Wang X, Wang Y, Jiao L, Yuan H (2016) Controllable synthesis of Cu-doped CoO hierarchical structure for high performance lithium-ion battery. J Power Sources 314:66–75CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Li Y, Chen J, Zhao P, Li D, Mu J, Zhang L (2017) CoO/Co3O4/graphene nanocomposites as anode materials for lithium-ion batteries. J Alloys Comp 699:672–678CrossRefGoogle Scholar
  41. 41.
    Larcher D, Sudant G, Leriche JB, Chabre Y, Tarascon JM (2002) The electrochemical reduction of Co3O4 in a lithium cell. J Electrochem Soc 149:A234–A241CrossRefGoogle Scholar
  42. 42.
    WenFu Z, Wang Y, Zhang Y, Qin QZ (2004) Electrochemical reaction of nanocrystalline Co3O4 thin film with lithium. Solid State Ionics 170(1):105–109Google Scholar
  43. 43.
    Kim Y, Kim S (2015) Direct growth of cobalt aluminum double hydroxides on graphene nanosheets and the capacitive properties of resulting composites. Electrochim Acta 163:252–259CrossRefGoogle Scholar
  44. 44.
    Wu JF, Zuo LYH, Song YH, Chen YQ, Zhou RH, Chen SH, Wang L (2016) Preparation of biomass-derived hierarchically porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. J Alloys Compd 656:745–752CrossRefGoogle Scholar
  45. 45.
    He J, Wu S, Zhao NQ, Shi CS, Liu CS, Li JJ (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7:4459–4469CrossRefGoogle Scholar
  46. 46.
    Lv WM, Zhao J, Wen FS, Xiang JY, Li L, Wang LM, Liu ZY, Tian YJ (2015) Carbonaceous photonic crystals as ultralong cycling anodes for lithium and sodium batteries. J Mater Chem A 3:13786–13793CrossRefGoogle Scholar
  47. 47.
    Chang K, Chen WX (2011) L-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728CrossRefGoogle Scholar
  48. 48.
    Jiang J, Li LL, Liu JP, Huang XT, Yuan CZ, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180CrossRefGoogle Scholar
  49. 49.
    Geng H, Guo Y, Ding X, Wang H, Zhang Y, Wu X, Jiang J, Zheng J, Yang Y, Gu H (2016) Porous cubes constructed by cobalt oxide nanocrystals with graphene sheet coatings for enhanced lithium storage properties. Nanoscale 8: 7688–7694Google Scholar
  50. 50.
    Ji G, Ma Y, Lee JY (2011) Mitigating the initial capacity loss (ICL) problem in high capacity lithium ion battery anode materials. J Mater Chem 21(27):9819–9824CrossRefGoogle Scholar
  51. 51.
    Reddy MV, Yu C, Jiahuan F, Loh KP, Chowdari BVR (2013) Li-cycling properties of molten salt method prepared nano/submicrometer and micrometer-sized CuO for lithium batteries. ACS Applied Mater Inter 5(10):4361–4366CrossRefGoogle Scholar
  52. 52.
    Reddy MV, Wen BLW, Loh KP, Chowdar BVR (2013) Energy storage studies on InVO4 as high performance anode material for Li-ion batteries. ACS Applied Mater Inter 5(16):7777–7785CrossRefGoogle Scholar
  53. 53.
    Ramasami AK, Reddy MV, Balakrishna GR (2015) Combustion synthesis and characterization of NiO nanoparticles. Mater Sci Semicond Process 40: 194–202
  54. 54.
    Reddy MV, Andreea LYT, Ling AY, Hwee JNC, Lin CA (2013) Effect of preparation temperature and cycling voltage range on molten salt method prepared SnO2. Electrochim Acta 106:143–148CrossRefGoogle Scholar
  55. 55.
    Ma GY, Lee JY (2011) Mitigating the initial capacity loss (ICL) problem in high capacity lithium ion battery anode materials. J Mater Chem 21(27):9819–9824CrossRefGoogle Scholar
  56. 56.
    Wu H, Chan G, Choİ JW, Ryu I, Yao Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7(5):310–315CrossRefGoogle Scholar
  57. 57.
    Mogensen KB, Gangloff L, Boggild P, Teo KBK, Milne WI, Kutter JP (2009) N carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications. Nanotechnology 20(9): 095503Google Scholar
  58. 58.
    Aurbach D (2000) Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sources 89:206–218CrossRefGoogle Scholar
  59. 59.
    Verma P, Maire P, Novak P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55:6332–6341CrossRefGoogle Scholar
  60. 60.
    Bresser D, Paillard E, Niehoff P, Krueger S, Mueller F, Winter M, Passerini S (2014) Challenges of going nano: enhanced electrochemical performance of cobalt oxide nanoparticles by carbothermal reduction and in situ carbon coating. Chemphyschem 15:2177–2185CrossRefGoogle Scholar
  61. 61.
    Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci 5:895–904CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Halil Şahan
    • 1
    Email author
  • Hüseyin Göktepe
    • 3
  • Süleyman Yıldız
    • 2
    • 3
  • Cafer Çaymaz
    • 3
  • Şaban Patat
    • 2
    • 3
  1. 1.Center for Renewable Energy Technology, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonUSA
  2. 2.Science Faculty, Department of ChemistryErciyes UniversityKayseriTurkey
  3. 3.Erciyes UniversityNanotechnology Research CenterKayseriTurkey

Personalised recommendations