Advertisement

Ionics

, Volume 25, Issue 2, pp 655–664 | Cite as

Facile and cost-effective synthesis of flower-like RGO/Fe3O4 nanocomposites with ultra-long cycling stability for supercapacitors

  • P. Rosaiah
  • Jinghui Zhu
  • O. M. Hussain
  • Yejun QiuEmail author
Original Paper

Abstract

The RGO/Fe3O4 nanocomposites were synthesized by an easy and cost-effective graphenothermal process during which GO and Fe2O3 were reduced to RGO and Fe3O4, thus forming the RGO/Fe3O4 nanocomposite. This material possesses high specific surface area of 141.3 m2 g−1 and average pore diameter of 5.8 nm. The RGO/Fe3O4 nanocomposites showed excellent electrochemical performance in supercapacitors (SCs). As a SC electrode, it exhibited an excellent specific capacitance (Cs) of 498 F g−1 at a scan rate of 10 mV s−1 and maintained 98.7% of capacitance retention at 500 mV s−1 over 5000 cycles. Moreover, it exhibited 94% of capacitance retention over 10,000 cycles at a current density of 3 A g−1. So, the developed RGO/Fe3O4 nanocomposite materials here hold high potential for energy storage applications.

Keywords

Reduced graphene oxide Fe3O4 Graphenothermal reduction Supercapacitors 

Notes

Funding information

The work was financially supported by the Shenzhen Bureau of Science, Technology and Innovation Commission JCYJ20160525163956782 and JCYJ 20170811154527927.

Supplementary material

11581_2018_2669_MOESM1_ESM.doc (3.1 mb)
ESM 1 (DOC 3171 kb)

References

  1. 1.
    Lecce DD, Verrelli R, Hassoun J (2017) Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. Green Chem 19:3442–3467CrossRefGoogle Scholar
  2. 2.
    Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for li ion batteries. Chem Rev 113:5364–5457CrossRefGoogle Scholar
  3. 3.
    Kou T, Yao B, Liu T, Li Y (2017) Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. J Mater Chem A 5:17151–17173CrossRefGoogle Scholar
  4. 4.
    Afzal A, Abuilaiwi FA, Habib A, Awais M, Waje SB, Atieh MA (2017) Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J Power Sources 352:174–186CrossRefGoogle Scholar
  5. 5.
    Cai X, Lai L, Shen Z, Lin J (2017) Graphene and graphene-based composites as li-ion battery electrode materials and their application in full cells. J Mater Chem A 5:15423–15446CrossRefGoogle Scholar
  6. 6.
    Sun J, Wu C, Sun X, Hu H, Zhi C, Houa L (2017) Recent progresses in high-energy-density all pseudocapacitive electrode materials based asymmetric supercapacitors. J Mater Chem A 5:9443–9464CrossRefGoogle Scholar
  7. 7.
    Kumar R, Singh RK, Savu R, Dubey PK, Kumar P, Stanislav A (2016) Moshkalev, microwave-assisted synthesis of void-induced graphene-wrapped nickel oxide hybrids for supercapacitor applications. RSC Adv 6:26612–26620CrossRefGoogle Scholar
  8. 8.
    Kumar R, Singh RK, Singh DP, Joanni E, Yadav RM, Moshkalev SA (2017) Laser-assisted synthesis, reduction and micro-patterning of graphene: recent progress and applications. Coord Chem Rev 342:34–79CrossRefGoogle Scholar
  9. 9.
    Kumar R, Savu R, Joanni E, Vaz AR, Canesqui MA, Singh RK, Timm RA, Kubota LT, Moshkalev SA (2016) Fabrication of interdigitated micro-supercapacitor devices by direct laser writing onto ultra-thin, flexible and free-standing graphite oxide films. RSC Adv 6:84769–84776CrossRefGoogle Scholar
  10. 10.
    Li X, Zhang Z, Li J, Ma Y, Yongquan Q (2015) Structural influence of porous FeOx@C nanorods on their performance as anodes of lithium-ion batteries. J Mater Chem A 3:18649–18656CrossRefGoogle Scholar
  11. 11.
    Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338CrossRefGoogle Scholar
  12. 12.
    Zhu K, Zhang Y, Qiu H, MEng Y, Gao Y, Meng X, Gao Z, Chen G, Wei Y (2016) Hierarchical Fe3O4 microsphere/reduced graphene oxide composites as a capable anode for lithium ion batteries with remarkable cycling performance. J Alloys Compd 675:399–406CrossRefGoogle Scholar
  13. 13.
    Mondal S, Rana U, Malik S (2017) Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J Phys Chem C 121:7573–7583CrossRefGoogle Scholar
  14. 14.
    Lim YS, Lai CW, Hamid SBA (2017) Porous 3D carbon decorated Fe3O4 nanocomposite electrode for highly symmetrical supercapacitor performance. RSC Adv 7:23030–23040CrossRefGoogle Scholar
  15. 15.
    Nithya VD, Arul NS (2016) Progress and development of Fe3O4 electrodes for supercapacitors. J Mater Chem A 4:10767–10778CrossRefGoogle Scholar
  16. 16.
    Yuan SM, Li JX, Yang LT, Su LW, Liu L, Zhou Z (2011) Preparation and lithium storage performances of mesoporous Fe3O4@C microcapsules. ACS Appl Mater Interfaces 3:705–709CrossRefGoogle Scholar
  17. 17.
    Jiang Y, Jiang ZJ, Yang L, Cheng S, Liu M (2015) A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J Mater Chem A 3:11847–11856CrossRefGoogle Scholar
  18. 18.
    Liu Y, Wu N, Wang Z, Cao H, Liu J (2017) Fe3O4 nanoparticles encapsulated in multi-walled carbon nanotubes possess superior lithium storage capability. New J Chem 41:6241–6250CrossRefGoogle Scholar
  19. 19.
    Chen JS, Zhang Y, Lou XW (2011) One-pot synthesis of uniform Fe3O4 nanospheres with carbon matrix support for improved lithium storage capabilities. ACS Appl Mater Interfaces 3:3276–3279CrossRefGoogle Scholar
  20. 20.
    Liu Y, Li P, Wang Y, Liu J, Wang Y, Zhang J, Wu M, Qi J (2017) A green and template recyclable approach to prepare Fe3O4/porous carbon from petroleum asphalt for lithium-ion batteries. J Alloys Compd 695:2612–2618CrossRefGoogle Scholar
  21. 21.
    Zhao J, Yang B, Zheng Z, Yang J, Yang Z, Zhang P, Ren W, Yan X (2014) Graphene-doped carbon/Fe3O4 porous nanofibers with hierarchical band construction as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces 6:9890–9896CrossRefGoogle Scholar
  22. 22.
    Liu H, Jia M, Zhu Q, Cao B, Chen R, Wang Y, Wu F, Xu B (2016) 3D-0D graphene-Fe3O4 quantum dot hybrids as high performance anode materials for sodium-ion batteries. ACS Appl Mater Interfaces 8:26878–26885CrossRefGoogle Scholar
  23. 23.
    Yan F, Ding J, Liu Y, Wang Z, Cai Q, Zhang J (2015) Fabrication of magnetic irregular hrxagonal-Fe3O4 sheets/reduced graphene oxide composite for supercapacitors. Synth Met 209:473–479CrossRefGoogle Scholar
  24. 24.
    Wang L, Yu J, Dong X, Li X, Xie Y, Chen S, Li P, Hou H, Song Y (2016) Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor. ACS Sustain Chem Eng 4:1531–1537CrossRefGoogle Scholar
  25. 25.
    Fan H, Niu R, Duan J, Liu W, Shen W (2016) Fe3O4@carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl Mater Interfaces 8:19475–19483CrossRefGoogle Scholar
  26. 26.
    Singh RK, Kumar R, Singh DP (2016) Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv 6:64993–65011CrossRefGoogle Scholar
  27. 27.
    Kumar R, Joanni E, Singh RK, Singh DP, Moshkalev SA (2018) Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Prog Energy Combust Sci 67:115–157CrossRefGoogle Scholar
  28. 28.
    Kumar R, Joanni E, Singh RK, da Silva ETSG, Savu R, Kubota LT, Moshkalev SA (2017) Direct laser writing of micro-supercapacitors on thick graphite oxide films and their electrochemical properties in different liquid inorganic electrolytes. J Colloid Interface Sci 507:271–278CrossRefGoogle Scholar
  29. 29.
    Liu T, Zhang X, Li B, Ding J, Liu Y, Li G, Meng X, Cai Q, Zhang J (2014) Fabrication of quasi-cubic Fe3O4@rGO composite via a colloid electrostatic self-assembly process for supercapacitors. RSC Adv 4:50765–50770CrossRefGoogle Scholar
  30. 30.
    Wang Q, Jiao L, Hongmei D, Wang Y, Yuan H (2014) Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J Power Sources 245:101–106CrossRefGoogle Scholar
  31. 31.
    Lian C, Wang Z, Lin R, Wang D, Chen C, Li Y (2017) An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties. Nano Res 10:3303–3313CrossRefGoogle Scholar
  32. 32.
    Kumar R, Singh RK, Alaferdov AV, Moshkalev SA (2018) Rapid and controllable synthesis of Fe3O4 octahedral nanocrystals embedded-reduced graphene oxide using microwave irradiation for high performance lithium-ion batteries. Electrochim Acta 281:78–87CrossRefGoogle Scholar
  33. 33.
    Wu Q-H, Qu B, Tang J, Wang C, Wang D, Li Y, Ren J-G (2015) An alumina-coated Fe3O4-reduced graphene oxide composite electrode as a stable anode for lithium-ion battery. Electrochim Acta 156:147–153CrossRefGoogle Scholar
  34. 34.
    Li L, Dou Y, Wang L, Luo M, Liang J (2014) One-step synthesis of high quality N-doped graphene/Fe3O4 hybrid nanocomposite and its improved supercapacitor performances. RSC Adv 4:25658–25665CrossRefGoogle Scholar
  35. 35.
    P. Rosaiah, Jinghui Zhu, O.M. Hussain, Yejun Qiu. Graphenothermal reduction synthesis of MnO/RGO composite with excellent anodic behaviour in lithium ion batteries. Ceram Int 2018;44:3077–3084Google Scholar
  36. 36.
    Liang CL, Liu Y, Bao RY, Luo Y, Yang W, Xie BH, Yang MB (2016) Effects of Fe3O4 loading on the cycling performance of Fe3O4/rGO composite anode matrial for lithium ion batteries. J Alloys Compd 678:80–86CrossRefGoogle Scholar
  37. 37.
    Kumar R, Singh RK, Vaz AR, Savu R, Moshkalev SA (2017) Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high performance supercapacitor electrode. ACS Appl Mater Interfaces 9:8880–8890CrossRefGoogle Scholar
  38. 38.
    Li L, Gao P, Gai S, He F, Chen Y, Zhang M, Yang P (2016) Ultra small and highly dispersed Fe3O4 nanoparticles anchored on reduced graphene for supercapacitor application. Electrochim Acta 190:566–573CrossRefGoogle Scholar
  39. 39.
    Naderi HR, Norouzi P, Ganjali MR, Ranjbar HG (2016) Synthesis of a novel magnetite/nitrogen doped reduced graphene oxide nanocomposite as high performance supercapacitor. Powder Technol 302:298–308CrossRefGoogle Scholar
  40. 40.
    Wang H, Xie J, Follette M, Back TC, Amama PB (2016) Magnetic field-induced fabrication of Fe3O4/graphene nanocomposites for enhanced electrode performance in lithium ion batteries. RSC Adv 6:83117–83125CrossRefGoogle Scholar
  41. 41.
    Sarno M, Ponticorvo E, Cirillo C (2016) High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors. J Phys Chem Solids 99:138–147CrossRefGoogle Scholar
  42. 42.
    Wu Q, Chen M, Chen K, Wang S, Wang C, Diao G (2016) Fe3O4 based core/shell nanocomposites for high-performance electrochemical supercapacitors. J Mater Sci 51:1572–1580CrossRefGoogle Scholar
  43. 43.
    Ma J, Wang K, Zhan MS (2015) Growth mechanism, electrical and magnetic properties of Ag-Fe3O4 core-shell nanowires. ACS Appl Mater Interfaces 7:16027–16039CrossRefGoogle Scholar
  44. 44.
    Ghasemi S, Ahmadi F (2015) Effect of surfactant on the electrochemical performance of graphene/iron oxide electrode for supercapacitor. J Power Sources 289:129–137CrossRefGoogle Scholar
  45. 45.
    Tang X, Jia R, Zhai T, Xia H (2015) Hierarchical Fe3O4@Fe2O3 core-shell nanorod arrays as high-performance anode for asymmetric supercapacitor. ACS Appl Mater Interfaces 7:27518–27525CrossRefGoogle Scholar
  46. 46.
    Wang Q, Jiao L, Du H, Wang Y, Yuan H (2014) Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J Power Sources 245:101–106CrossRefGoogle Scholar
  47. 47.
    Shi W, Zhu J, Sim DH, Tay YY, Lu Z, Zhang X, Sharma Y, Srinivasan M, Zhang H, Hng HH, Yan Q (2011) Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposite. J Mater Chem 21:3422–3427CrossRefGoogle Scholar
  48. 48.
    Qi T, Jiang J, Chen H, Wan H, Miao L, Zhang L (2013) Synergistic effect of Fe3O4/reduced graphene oxide nanocomposite for supercapacitors with good cycle life. Electrochim Acta 114:674–680CrossRefGoogle Scholar
  49. 49.
    Liu S, Guo S, Sunb S, Youa XZ, Like D. Dumbbell-like Au-Fe3O4 nanoparticles: a new nanostructure for supercapacitors. nanoscale 2015;7:4890–3Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. Rosaiah
    • 1
  • Jinghui Zhu
    • 1
  • O. M. Hussain
    • 2
  • Yejun Qiu
    • 1
    Email author
  1. 1.Shenzhen Engineering Lab of Flexible Transparent Conductive Films, Department of Materials Science and EngineeringHarbin Institute of TechnologyShenzhenChina
  2. 2.Thin Film Laboratory, Department of PhysicsSri Venkateswara UniversityTirupatiIndia

Personalised recommendations