pp 1–9 | Cite as

Anchoring RuO2 nanoparticles on reduced graphene oxide-multi-walled carbon nanotubes as a high-performance supercapacitor

  • Mir Ghasem HosseiniEmail author
  • Elham Shahryari
Original Paper


Herein, we have prepared reduced graphene oxide-multi-walled carbon nanotubes-RuO2 (RGO-MWCNT-RuO2) for supercapacitor applications. For reaching to this purpose, graphene oxide (GO) was reduced with the help of NaBH4 and MWCNT was added to it. Then, RuO2 nanoparticles were decorated on the surfaces of RGO-MWCNT. Different techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) have been used to characterize the as-prepared sample. Electrochemical performance of the electrodes was studied in 1 M H2SO4 with different electrochemical techniques such as cyclic voltammetry (CV), charge–discharge (CD), and electrochemical impedance spectroscopy (EIS). RGO-MWCNT-RuO2 electrode showed high specific capacitance of 1846.3 F g−1 at 10 mV s−1. Meanwhile, this electrode exhibits excellent long cycle life of 98.3% initial specific capacitance retained after 500 cycles of charge–discharge at 100 A g−1. These excellent properties make this nanocomposite as a good candidate for supercapacitor electrodes.


Supercapacitor RuO2 Reduced graphene oxide Specific capacitance 



The authors are grateful to the Iran National Science Foundation (INSF) No. found 95836629 and the office of Vice Chancellor in Charge of Research of University of Tabriz. The authors would like to thank Adib Katurani for assistance in the measurement of TGA analysis.


  1. 1.
    Hosseini MG, Rasouli H, Shahryari E, Naji L (2017) Electrochemical behavior Nafion membrane based solid-state supercapacitor with GM/polypyrrole nanocomposite. J Appl Polym Sci.
  2. 2.
    Wang L, Yue L, Zang X, Zhu H, Hao X, Leng Z, Liu X, Chen S (2016) Synthesis of 3D α-MnMoO4 hierarchical architectures for high-performance supercapacitor applications. CrystEngComm 18(48):9286–9291. CrossRefGoogle Scholar
  3. 3.
    Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashi N, Yamauchi Y (2016) A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun 52(26):4764–4767. CrossRefGoogle Scholar
  4. 4.
    Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46(22):6816–6854. CrossRefPubMedGoogle Scholar
  5. 5.
    Hosseini MG, Shahryari E (2016) Synthesis, characterization and electrochemical study of graphene oxide-multi walled carbon nanotube-manganese oxide-polyaniline electrode as supercapacitor. J Mater Sci Technol 32(8):763–773. CrossRefGoogle Scholar
  6. 6.
    Hosseini MG, Shahryari E (2017) Fabrication of novel solid-state supercapacitor using a Nafion polymer membrane with graphene oxide/multiwalled carbon nanotube/polyaniline. J Solid State Electrochem 21(10):2833–2848Google Scholar
  7. 7.
    Hosseini MG, Shahryari E (2017) A novel high-performance supercapacitor based on Chitosan/GO-MWCNT/PANI. J Colloid Interface Sci 496:371–381. CrossRefGoogle Scholar
  8. 8.
    Yan P, Zhang X, Hou M, Zhang R, Liu K, Liu T, Liu Y (2018) Fabrication and enhanced electrochemical performance of a nitrogen-doped porous graphene/nanometer-sized carbide-derived carbon composite for supercapacitors. Ionics.
  9. 9.
    Salunkhe RR, Lee YH, Chang KH, Li JM, Simon P, Tang J, Torad NL, Hu CC, Yamauchi Y (2014) Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chem Eur J 20(43):13838–13852. CrossRefPubMedGoogle Scholar
  10. 10.
    Salunkhe RR, Hsu SH, Wu KCW, Yamauchi Y (2014) Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. ChemSusChem 7(6):1551–1556. CrossRefPubMedGoogle Scholar
  11. 11.
    Tang J, Yamauchi Y (2016) MOF morphologies in control. Nat Chem 8:638–639. CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Y, Chen B, Zhang Y, Fu L, Zhu Y, Zhang L, Wu Y (2016) ZIF-8@MWCNT-derived carbon composite as electrode of high performance for supercapacitor. Electrochim Acta 213:260–269. CrossRefGoogle Scholar
  13. 13.
    Yan W, Ayvazian T, Kim J, Liu Y, Donavan KC, Xing W, Yang Y, Hemminger JC, Penner RM (2011) Mesoporous manganese oxide nanowires for high-capacity, high-rate, hybrid electrical energy storage. ACS Nano 5(10):8275–8287. CrossRefPubMedGoogle Scholar
  14. 14.
    Marcinauskas L, Kavaliauskas Ž, Valinčius V (2012) Carbon and nickel oxide/carbon composites as electrodes for supercapacitors. J Mater Sci Technol 28(10):931–936. CrossRefGoogle Scholar
  15. 15.
    Omar FS, Numan A, Duraisamy N, Ramly MM, Ramesha K, Ramesh S (2017) Binary composite of polyaniline/copper cobaltite for high performance asymmetric supercapacitor application. Electrochim Acta 227:41–48. CrossRefGoogle Scholar
  16. 16.
    Sun A, Xie L, Wang D, Wu Z (2018) Enhanced energy storage performance from co-decorated MoS2 nanosheets as supercapacitor electrode materials. Ceram Int.
  17. 17.
    Boddula R, Bolagam R, Srinivasan P (2018) Incorporation of graphene-Mn3O4 core into polyaniline shell: supercapacitor electrode material. Ionics 24(5):1467–1474. CrossRefGoogle Scholar
  18. 18.
    Tang W, Hou YY, Wang XJ, Bai Y, Zhu YS, Sun H, Yue YB, Wu YP, Zhu K, Holze R (2012) A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors. J Power Sources 197:330–333. CrossRefGoogle Scholar
  19. 19.
    Chen B, Wang Y, Li C, Fu L, Liu X, Zhu Y, Zhang L, Wu Y (2017) A Cr2O3/MWCNTs composite as a superior electrode material for supercapacitor. RSC Adv 7(40):25019–25024. CrossRefGoogle Scholar
  20. 20.
    Wang X, Li M, Chang Z, Yang Y, Wu Y, Liu X (2015) Co3O4@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors. ACS Appl Mater Interfaces 7(4):2280–2285. CrossRefPubMedGoogle Scholar
  21. 21.
    Kumar M, Singh K, Dhawan SK, Tharanikkarasu K, Chung JS, Kong B-S, Kim EJ, Hur SH (2013) Synthesis and characterization of covalently-grafted graphene–polyaniline nanocomposites and its use in a supercapacitor. Chem Eng J 231:397–405. CrossRefGoogle Scholar
  22. 22.
    Asif M, Tan Y, Pan L, Rashad M, Li J, Fu X, Cui R (2016) Synthesis of a highly efficient 3D graphene-CNT-MnO2-PANI nanocomposite as a binder free electrode material for supercapacitors. PCCP 18(38):26854–26864. CrossRefPubMedGoogle Scholar
  23. 23.
    Xiang C, Jiang D, Zou Y, Chu H, Qiu S, Zhang H, Xu F, Sun L, Zheng L (2015) Ammonia sensor based on polypyrrole–graphene nanocomposite decorated with titania nanoparticles. Ceram Int 41(5):6432–6438. CrossRefGoogle Scholar
  24. 24.
    Ramesh G, Palaniappan S, Basavaiah K (2018) One-step synthesis of PEDOT-PSS●TiO2 by peroxotitanium acid: a highly stable electrode for a supercapacitor. Ionics 24(5):1475–1485. CrossRefGoogle Scholar
  25. 25.
    Salunkhe RR, Tang J, Kobayashi N, Kim J, Ide Y, Tominaka S, Kim JH, Yamauchi Y (2016) Ultrahigh performance supercapacitors utilizing core-shell nanoarchitectures from a metal-organic framework-derived nanoporous carbon and a conducting polymer. Chem Sci 7(9):5704–5713. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Amir F, Pham V, Dickerson J (2015) Facile synthesis of ultra-small ruthenium oxide nanoparticles anchored on reduced graphene oxide nanosheets for high-performance supercapacitors. RSC Adv 5(83):67638–67645CrossRefGoogle Scholar
  27. 27.
    He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7(1):174–182. CrossRefPubMedGoogle Scholar
  28. 28.
    Kim I-H, Kim J-H, Lee Y-H, Kim K-B (2005) Synthesis and characterization of electrochemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications. J Electrochem Soc 152(11):A2170–A2178. CrossRefGoogle Scholar
  29. 29.
    Bi R-R, Wu X-L, Cao F-F, Jiang L-Y, Guo Y-G, Wan L-J (2010) Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J Phys Chem C 114(6):2448–2451CrossRefGoogle Scholar
  30. 30.
    Sarkar SK, Raul KK, Pradhan SS, Basu S, Nayak A (2014) Magnetic properties of graphite oxide and reduced graphene oxide. Physica E: Low-dimensional Systems and Nanostructures 64(11):78–82CrossRefGoogle Scholar
  31. 31.
    Gopiraman M, Babu SG, Karvembu R, Kim I (2014) Nanostructured RuO2 on MWCNTs: efficient catalyst for transfer hydrogenation of carbonyl compounds and aerial oxidation of alcohols. Appl Catal A Gen 484:84–96CrossRefGoogle Scholar
  32. 32.
    Mu B, Zhang W, Shaoc S, Wang A (2014) Glycol assisted synthesis of graphene–MnO2– polyaniline ternary composites for high performance supercapacitor electrodes. R Soc Chem 16:7872–7880Google Scholar
  33. 33.
    Wang F, Xu Q, Tan Z, Li L, Li S, Hou X, Sun G, Tu X, Hou J, Li Y (2014) Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer. J Mater Chem A 2(5):1318–1324CrossRefGoogle Scholar
  34. 34.
    Hosseini MG, Shahryari E (2016) Performance of polyaniline/manganese oxide-MWCNT nanocomposites as supercapacitors. Iran Chem Commun 3:67–77Google Scholar
  35. 35.
    Hosseini MG, Shahryari E, Najjar R, Ahadzadeh I (2015) Study of supercapacitive behavior of polyaniline/manganese oxide-carbon black nanocomposites based electrodes. Int J Nanosci Nanotechnol 11:147–157Google Scholar
  36. 36.
    Zhang H, Wang J, Shan Q, Wang Z, Wang S (2013) Tunable electrode morphology used for high performance supercapacitor: polypyrrole nanomaterials as model materials. Electrochim Acta 90:535–541. CrossRefGoogle Scholar
  37. 37.
    Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20(20):3595–3602CrossRefGoogle Scholar
  38. 38.
    Muniraj VKA, Kamaja CK, Shelke MV (2016) RuO2· nH2O nanoparticles anchored on carbon nano-onions: an efficient electrode for solid state flexible electrochemical supercapacitor. ACS Sustain Chem Eng 4(5):2528–2534CrossRefGoogle Scholar
  39. 39.
    Deshmukh P, Patil S, Bulakhe R, Sartale S, Lokhande C (2014) Inexpensive synthesis route of porous polyaniline–ruthenium oxide composite for supercapacitor application. Chem Eng J 257:82–89CrossRefGoogle Scholar
  40. 40.
    Min M, Machida K, Jang JH, Naoi K (2006) Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J Electrochem Soc 153(2):A334–A338. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry FacultyUniversity of TabrizTabrizIran
  2. 2.Engineering Faculty, Department of Materials Science and NanotechnologyNear East UniversityNicosiaTurkey

Personalised recommendations