Advertisement

Ionics

pp 1–9 | Cite as

Facile synthesis of boron-doped porous carbon as anode for lithium–ion batteries with excellent electrochemical performance

  • Qian Wang
  • Zhiyong Xie
  • Yili Liang
  • Liewu Li
  • Bei Liu
  • Xianghui Li
  • Chunbo Liu
  • Xiaobo Wu
  • Qizhong Huang
Original Paper

Abstract

A novel boron-doped porous carbon (BC) was prepared through a facile one step pyrolysis process by using citric acid monohydrate, boron acid, and sodium chloride hybrid as precursor. Based on the analysis of X-ray photoemission spectroscopy and Raman spectroscopy, three boron-doping species (BC3, BC2O, and BCO2) were doped in the carbon lattice. The BC2O and BCO2 can generate abundant extrinsic defects and active sites in the carbon matrix. The electron-deficient boron atom in BC3 improves the electric conductivity by adding more positive charged holes. As anode for lithium–ion batteries, the BC exhibits a stable reversible capacity above 600 mAh g−1 after 800 cycles under a current density of 1 A g−1 and preferable rate performance. Hence, this work provides a facile and effective strategy to fabricate a promising anode material for the high-performance lithium–ion batteries.

Keywords

Boron-doped Porous carbon Pyrolysis process Lithium–ion batteries 

Notes

Funding information

The authors gratefully acknowledge the financial supported by the National Key Research and Development Program of China (No.2016YFB0101310).

Supplementary material

11581_2018_2647_MOESM1_ESM.docx (2.2 mb)
ESM1 (DOCX 2252 kb)

References

  1. 1.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657CrossRefGoogle Scholar
  2. 2.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRefGoogle Scholar
  3. 3.
    Dunn B, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935CrossRefPubMedGoogle Scholar
  4. 4.
    Guo B, Wang X, Fulvio PF, Chi M, Mahurin SM, Sun XG, Dai S (2011) Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv Mater 23(40):4661–4666CrossRefPubMedGoogle Scholar
  5. 5.
    Jing M, Wang J, Hou H, Yang Y, Zhang Y, Pan C, Chen J, Zhu Y, Ji X (2015) Carbon quantum dots coated Mn3O4 with enhanced performances for lithium-ion batteries. J Mater Chem A 3(32):16824–16830CrossRefGoogle Scholar
  6. 6.
    Tan G, Bao W, Yuan Y, Liu Z, Shahbazianyassar R, Wu F, Amine K, Wang J, Lu J (2017) Freestanding highly defect nitrogen-enriched carbon nanofibers for lithium ion battery thin-film anodes. J Mater Chem A 5(11):5532–5540CrossRefGoogle Scholar
  7. 7.
    Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282CrossRefPubMedGoogle Scholar
  8. 8.
    Fan Y, Zhang Q, Xiao Q, Wang X, Huang K (2013) High performance lithium ion battery anodes based on carbon nanotube–silicon core–shell nanowires with controlled morphology. Carbon 59(7):264–269CrossRefGoogle Scholar
  9. 9.
    Fang Y, Lv Y, Gong F, Wu Z, Li X, Zhu H, Zhou L, Yao C, Zhang F, Zheng G, Zhao D (2015) Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres. J Am Chem Soc 137(8):2808–2811CrossRefPubMedGoogle Scholar
  10. 10.
    Wu H, Xia L, Ren J, Zheng Q, Xu C, Lin D (2017) A high-efficiency N/P co-doped graphene/CNT@porous carbon hybrid matrix as a cathode host for high performance lithium–sulfur batteries. J Mater Chem A 5(38):20458–20472CrossRefGoogle Scholar
  11. 11.
    Feckl JM, Fominykh K, Döblinger M, Fattakhova-Rohlfing D, Bein T (2012) Nanoscale porous framework of Lithium Titanate for ultrafast Lithium insertion. Angew Chem 51(30):7459–7463CrossRefGoogle Scholar
  12. 12.
    Yang Y, Zhang J, Wu X, Fu Y, Wu H, Guo S (2014) Composites of boron-doped carbon nanosheets and iron oxide nanoneedles: fabrication and lithium ion storage performance. J Mater Chem A 2(24):9111–9117CrossRefGoogle Scholar
  13. 13.
    Zhang C, Mahmood N, Yin H, Liu F, Hou Y (2013) Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater 25(35):4932–4937CrossRefPubMedGoogle Scholar
  14. 14.
    Xia Q, Yang H, Wang M, Yang M, Guo Q, Wan L, Xia H, Yu Y (2017) High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv Energy Mater 7(22):1701336CrossRefGoogle Scholar
  15. 15.
    Yue L, Zhong H, Tang D, Zhang L (2012) Porous Si coated with S-doped carbon as anode material for lithium ion batteries. J Solid State Electrochem 17(4):961–968CrossRefGoogle Scholar
  16. 16.
    Guo W, Li X, Xu J, Liu HK, Ma J, Dou SX (2016) Growth of highly nitrogen-doped amorphous carbon for lithium-ion battery anode. Electrochim Acta 188:414–420CrossRefGoogle Scholar
  17. 17.
    Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6(10):2839–2855CrossRefGoogle Scholar
  18. 18.
    Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43(20):7067–7098CrossRefPubMedGoogle Scholar
  19. 19.
    Yang Y, Jin S, Zhang Z, Du Z, Liu H, Yang J, Xu H, Ji H (2017) Nitrogen-doped hollow carbon nanospheres for high-performance Li-ion batteries. ACS Appl Mater Interfaces 9(16):14180–14186CrossRefPubMedGoogle Scholar
  20. 20.
    Tao H, Xiong L, Du S, Zhang Y, Yang X, Zhang L (2017) Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: an ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon 122:54–63CrossRefGoogle Scholar
  21. 21.
    Zhang L, Xia G, Guo Z, Sun D, Li X, Yu X (2016) In situ fabrication of three-dimensional nitrogen and boron co-doped porous carbon nanofibers for high performance lithium-ion batteries. J Power Sources 324:294–301CrossRefGoogle Scholar
  22. 22.
    Wang H, Zhou Y, Wu D, Liao L, Zhao S, Peng H, Liu Z (2013) Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 9(8):1316–1320CrossRefPubMedGoogle Scholar
  23. 23.
    Jeon IY, Zhang S, Zhang L, Choi HJ, Seo JM, Xia Z, Dai L, Baek JB (2013) Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect. Adv Mater 25(42):6138–6145CrossRefPubMedGoogle Scholar
  24. 24.
    Ai W, Jiang J, Zhu J, Fan Z, Wang Y, Zhang H, Huang W, Yu T (2015) Supramolecular polymerization promoted in situ fabrication of nitrogen-doped porous graphene sheets as anode materials for Li-ion batteries. Adv Energy Mater 5(15):1500559CrossRefGoogle Scholar
  25. 25.
    Li W, Li M, Yang Z, Xu J, Zhong X, Wang J, Zeng L, Liu X, Jiang Y, Wei X (2015) Carbon-coated germanium nanowires on carbon nanofibers as self-supported electrodes for flexible lithium-ion batteries. Small 11(23):2762–2767CrossRefPubMedGoogle Scholar
  26. 26.
    Yeo JS, Park TH, Seo MH, Jin M, Mochida I, Yoon SH (2013) Enhancement of the rate capability of graphite via the introduction of boron-oxygen functional groups. Int J Electrochem Sci 8(1):1308–1315Google Scholar
  27. 27.
    Wang S, Zhang L, Xia Z, Roy A, Chang DW, Baek JB, Dai L (2012) BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 51(17):4209–4212CrossRefGoogle Scholar
  28. 28.
    Chae Y-J, Kim S-O, Lee JK (2014) Employment of boron-doped carbon materials for the anode materials of lithium ion batteries. J Alloys Compd 582(1):420–427CrossRefGoogle Scholar
  29. 29.
    Zhu S, Li J, Li Q, He C, Liu E, He F, Shi C, Zhao N (2016) Space-confined synthesis of three-dimensional boron/nitrogen-doped carbon nanotubes/carbon nanosheets line-in-wall hybrids and their electrochemical energy storage applications. Electrochim Acta 212:621–629CrossRefGoogle Scholar
  30. 30.
    Zhang L, Xia G, Guo Z, Li X, Sun D, Yu X (2016) Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries. Int J Hydrog Energy 41(32):14252–14260CrossRefGoogle Scholar
  31. 31.
    Tang YB, Yin LC, Yang Y, Bo XH, Cao YL, Wang HE, Zhang WJ, Bello I, Lee ST, Cheng HM (2012) Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano 6(3):1970–1978CrossRefPubMedGoogle Scholar
  32. 32.
    Shen W, Li H, Wang C, Li Z, Xu Q, Liu H, Wang Y (2015) Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries. J Mater Chem A 3(29):15190–15201CrossRefGoogle Scholar
  33. 33.
    Das D, Kim S, Lee KR, Singh AK (2013) Li diffusion through doped and defected graphene. Phys Chem Chem Phys 15(36):15128–15134CrossRefPubMedGoogle Scholar
  34. 34.
    Yun B-N, Du HL, Hwang J-Y, Jung H-G, Sun Y-K (2017) Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries. J Mater Chem A 5(6):2802–2810CrossRefGoogle Scholar
  35. 35.
    Bulusheva LG, Okotrub AV, Kurenya AG, Zhang H, Zhang H, Chen X, Song H (2011) Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 49(12):4013–4023CrossRefGoogle Scholar
  36. 36.
    Fujimoto H, Mabuchi A, Natarajan C, Kasuh T (2002) Properties of graphite prepared from boron-doped pitch as an anode for a rechargeable Li ion battery. Carbon 40(4):567–574CrossRefGoogle Scholar
  37. 37.
    Li Y, Li Y, Pei A, Yan K, Sun Y, Wu CL, Joubert LM, Chin R, Koh AL, Yu Y (2017) Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358(6362):506–510CrossRefPubMedGoogle Scholar
  38. 38.
    Wu ZS, Ren W, Xu L, Li F, Cheng HM (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471CrossRefPubMedGoogle Scholar
  39. 39.
    Byon HR, Gallant BM, Lee SW, Shao-Horn Y (2013) Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance Lithium batteries. Adv Funct Mater 23(8):1037–1045CrossRefGoogle Scholar
  40. 40.
    Zhang J, Zhang W, He T, Amiinu IS, Kou Z, Li J, Mu S (2017) Smart reconstruction of dual-carbon decorated MnO for anode with high-capacity and ultralong-life lithium storage properties. Carbon 115:95–104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qian Wang
    • 1
  • Zhiyong Xie
    • 1
  • Yili Liang
    • 2
  • Liewu Li
    • 1
  • Bei Liu
    • 1
  • Xianghui Li
    • 1
  • Chunbo Liu
    • 1
  • Xiaobo Wu
    • 2
  • Qizhong Huang
    • 1
  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China
  2. 2.School of Minerals Processing and BioengineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations