Advertisement

Ionics

, Volume 25, Issue 3, pp 1351–1358 | Cite as

Surface charge-assisted synthesis of ZnO on polarized BaTiO3 substrate

  • Ashutosh Kumar DubeyEmail author
  • Yuto Oyama
  • Ken-ichi Kakimoto
Original Paper
  • 56 Downloads

Abstract

The present work reports the effect of charged surfaces of BaTiO3 substrate on the synthesis of ZnO. The unpolarized and polarized BaTiO3 substrates were immersed in ZnO precursor solution and synthesis behavior of ZnO on both the surfaces was compared. The polarized BaTiO3 substrates have been observed to accelerate ZnO crystal growth. The surface charge density of the polarized substrate was measured to be 1.6 μC/cm2. To understand the effect of amount of substrate charge on growth behavior of ZnO crystals, the substrates with varying charge densities were prepared through partial depolarization of polarized substrates. With increase in the amount of surface charge, crystallization of ZnO increases due to enhanced electrostatic interactions. Overall, the polarization-assisted deposition method has been suggested as a simple, efficient, and rapid technique for the synthesis of multifunctional ZnO.

Keywords

ZnO BaTiO3 Surface charge Crystallization 

Notes

Acknowledgements

AKD gratefully acknowledge SERB, Department of Science and Technology (DST), Government of India for thier support.

References

  1. 1.
    Yamashita K, Oikawa N, Umegaki T (1996) Acceleration and deceleration of bone-like crystal growth on ceramic hydroxyapatite by electric poling. Chem Mater 8:2697–2700CrossRefGoogle Scholar
  2. 2.
    Itoh S, Nakamura S, Kobayashi T, Shinomiya K, Yamashita K, Itoh S (2006) Effect of electrical polarization of hydroxyapatite ceramics on new bone formation. Calcif Tissue Int 78:133–142CrossRefGoogle Scholar
  3. 3.
    Horiuchi N, Nakaguki S, Wada N, Nozaki K, Nakamura M (2014) Polarization-induced surface charges in hydroxyapatite ceramics. J Appl Phys 116:014902CrossRefGoogle Scholar
  4. 4.
    Zhu P, Masuda Y, Koumoto K (2004) The effect of surface charge on hydroxyapatite nucleation. Biomater 25:3915–3921CrossRefGoogle Scholar
  5. 5.
    Hwang KS, Song JE, Yang HS, Park YJ, Ong JL, Rawls HR (2002) Effect of poling conditions on growth of calcium phosphate crystal in ferroelectric BaTiO3 ceramics. J Mater Sc Mater Med 13:133–138CrossRefGoogle Scholar
  6. 6.
    Park YJ, Hwanga KS, Song JE, Ong JL, Rawls HR (2002) Growth of calcium phosphate on poling treated ferroelectric BaTiO3 ceramics. Biomater 23:3859–3864CrossRefGoogle Scholar
  7. 7.
    Wu Y, Hsu SL (2012) The role of surface charge of nucleation agents on the crystallization behavior of poly (vinylidene fluoride). J Phys Chem B 116:7379–7388CrossRefGoogle Scholar
  8. 8.
    Obata A, Nakamura S, Moriyoshi Y, Yamashita K (2003) Electrical polarization of bioactive glass and assessment of their in vitro apatite deposition. J Biomed Mater Res 67A:413–420CrossRefGoogle Scholar
  9. 9.
    Bolsinger M, Brizzolara D, Tefehne C, Schneider HA (1996) Side-chain crystallization induced in amorphous polymers by charge-transfer interaction. Macromol Symp 106:55–72CrossRefGoogle Scholar
  10. 10.
    Dubey AK, Yamada H, Kakimoto K (2013) Space charge polarization induced augmented in vitro bioactivity of piezoelectric (Na, K) NbO3. J Appl Phys 114:124701CrossRefGoogle Scholar
  11. 11.
    Dubey AK, Yamada H, Kakimoto K (2013) Surface charge induced enhanced crystallization on the piezoelectric sodium potassium niobate substrate. J Cryst Growth 382:7–14CrossRefGoogle Scholar
  12. 12.
    Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72:126501–126529CrossRefGoogle Scholar
  13. 13.
    Ozgur U, Hofstetter D, and Morkoc H ZnO (2010) Devices and applications: a review of current status and future prospects, Proc IEEE 98 (7): 1255–1268Google Scholar
  14. 14.
    Saha N, Dubey AK, Basu B (2012) Cellular proliferation, cellular viability and biocompatibility of HA-ZnO composites. J Biomed Mater Res B Appl Biomater 100B:256–264CrossRefGoogle Scholar
  15. 15.
    Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7:2833–2881CrossRefGoogle Scholar
  16. 16.
    Zeng Y, Chen XF, Yi Z, Yi Y, Xu X (2018) Fabrication of p-n heterostructure ZnO/Si moth-eye structures: antireflection, enhanced charge separation and photocatalytic properties. Appl Surf Sci 441:40–48CrossRefGoogle Scholar
  17. 17.
    Yi Z, Xu X, Kang X, Zhao Y, Zhang S, Yao W, Yi Y, Luo J, Wang C, Yi Y, Tang Y (2017) Fabrication of well-aligned ZnO@Ag nanorod arrays with effective charge transfer for surface-enhanced Raman scattering, ZnO. Surf Coat Tech 324:257–263CrossRefGoogle Scholar
  18. 18.
    Yi Z, Luo J, Ye X, Yi Y, Huang J, Yi Y, Duan T, Zhang W, Tang Y (2016) Effect of synthesis conditions on the growth of various ZnO nanostructures and corresponding morphology-dependent photocatalytic activities. Superlattice Microst 100:907–917CrossRefGoogle Scholar
  19. 19.
    Wang XH, Shi J, Dai S, Yang Y (2003) A sol-gel method to prepare pure and gold colloid doped ZnO films. Thin Solid Films 429:102–107CrossRefGoogle Scholar
  20. 20.
    Deng X, Guan X, Chen P, Lu C, Tan Z, Li D, Li J, Wang X, Li L (2010) Ferroelectric properties study for nanograin barium titanate ceramics. Thin Solid Films 518:e75–e77CrossRefGoogle Scholar
  21. 21.
    Deng X, Wen X, Chen L, Chen L, Li L (2006) Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl Phys Lett 88:182509CrossRefGoogle Scholar
  22. 22.
    Wojnarowicz J, Opalinska A, Chudoba T, Gierlotka S, Mukhovskyi R, Pietrzykowska E, Sobczak K, Lojkowski W (2016) Effect of water content in ethylene glycol solvent on the size of ZnO nanoparticles prepared using microwave solvothermal synthesis, J Nanomater. 2016(1–15):2789871Google Scholar
  23. 23.
    Zhao F, Lin W, Wu M, Xu N, Yang X, Tian ZR, Su Q (2006) Hexagonal and prismatic nanowalled ZnO microboxes. Inorg Chem 45:3256–3260CrossRefGoogle Scholar
  24. 24.
    Sahina O, Nusret Bulutcu A (2002) Effect of surface charge distribution on the crystal growth of sodium perborate tetrahydrate. J Cryst Growth 241:471–480CrossRefGoogle Scholar
  25. 25.
    Barrett CS. Structure of metal, 1952Google Scholar
  26. 26.
    Switzer JA, Kothari HM, Bohannan EW (2002) Thermodynamic to kinetic transition in epitaxial electrodeposition. J Phys Chem B 106:4027–4031CrossRefGoogle Scholar
  27. 27.
    Singh CR, Gupta G, Lohwasser R, Engmann S, Balko J, Thelakkat M, Thurn-Albrecht T, Hoppe H (2013) Correlation of charge transport with structural order in highly ordered melt-crystallized poly (3-hexylthiophene) thin films. J Polymer Sci B: Polymer Phys 51:943–951CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ashutosh Kumar Dubey
    • 1
    Email author
  • Yuto Oyama
    • 2
  • Ken-ichi Kakimoto
    • 2
    • 3
  1. 1.Department of Ceramic EngineeringIndian Institute of Technology (BHU)VaranasiIndia
  2. 2.Department of Materials Science and Engineering, Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan
  3. 3.Frontier Research Institute for Materials ScienceNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations