Advertisement

Ionics

, Volume 24, Issue 10, pp 2915–2923 | Cite as

Carbon@SnS2 core-shell microspheres for lithium-ion battery anode materials

  • Guoyun Yu
  • Xiujuan Chen
  • Ansong Wang
  • Youliang Wang
Review
  • 149 Downloads

Abstract

A novel unique C@SnS2 core-shell structure composites consisting of well-dispersity carbon microspheres and ultrathin tin disulfide nanosheets were successfully synthesized for the first time through a simple solvothermal method. The thin SnS2 nanosheets grew onto the carbon microspheres surfaces perpendicularly and formed the close-knit porous structure. When it was used as anode materials for lithium-ion batteries, the hybrid C@SnS2 core-shell structure composites showed a remarkable electrochemical property than pure SnS2 nanosheets. Typically, the hybrid composites with SnS2 nanosheet shells and carbon microsphere’s core exhibited an excellent initial discharge capacity of 1611.6 mAh/g. Moreover, the hybrid composites exhibited capacities of 474.8–691.6 mAh/g at 100 mA/g over 50 battery cycles, while the pure SnS2 could deliver capacities of 243–517.6 mAh/g in the tests. The results indicated that the improvement of lithium storage performance of the core-shell structure C@SnS2 anode materials in terms of rate capability and cycling reversibility owing to the introduction of the smooth carbon microspheres and special designing of core-shell structure.

Keywords

SnS2 Carbon microspheres Core-shell structure Anode materials Lithium-ion batteries 

Notes

Acknowledgements

We would like to acknowledge the Lanzhou University and Lanzhou Institute of Chemical Physics for providing the facilities for analysis, characterization, and testing.

Funding information

The project was supported by the Key Research Projects in Gansu Province (No. 17YF1GA020).

References

  1. 1.
    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang XY, Zhong XX, Xu W, Li X, Liu WY, Lin YH (2018) Preparation and electrochemical properties of Li4Ti5O12 /Ti4O7 composite for lithium-ion batteries. Ionics 24:379–384Google Scholar
  3. 3.
    Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Mat 8:500–506CrossRefGoogle Scholar
  4. 4.
    Girishkumar G, Mccloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1:2193–2203CrossRefGoogle Scholar
  5. 5.
    Su CY, Cheng H, Li W, Ma TY (2017) Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv Ene Mater 7:1602420CrossRefGoogle Scholar
  6. 6.
    Cheng H, Chen JM, Li QJ, Li QJ, Chen AN, Zhang JX, Liu ZQ, Tong Y (2017) A modified molecular framework derived highly efficient Mn-Co-Carbon cathode for a flexible Zn-air battery. Chem Commun 53:11596–11599CrossRefGoogle Scholar
  7. 7.
    Fu CL, Chen TQ, Qin W, Lu T, Sun Z, Xie XH, Pan LK (2016) Scalable synthesis and superior performance of TiO2-reduced graphene oxide composite anode for sodium-ion batteries. Ionics 22:555–562CrossRefGoogle Scholar
  8. 8.
    Zhu HL, Jia Z, Chen YC, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L (2013) Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 13:3093–3100CrossRefPubMedGoogle Scholar
  9. 9.
    Xie XQ, Su DW, Chen SQ, Zhang J, Dou S, Wang G (2014) SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem Asian J 9:1611–1617CrossRefPubMedGoogle Scholar
  10. 10.
    Jiang X, Yang XL, Zhu YH, Shen JH, Fan KC, Li CZ (2013) In situ assembly of graphene sheetssupported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries. J Power Sources 237:178–186CrossRefGoogle Scholar
  11. 11.
    Xu WW, Xie ZQ, Cui XD, Zhao KN, Zhang L, Dietrich G, Dooley KM, Wang Y (2015) Hierarchical graphene-encapsulated hollow SnO2@SnS2 nanostructures with enhanced lithium storage capability. ACS Appl Mat Interfaces 7:22533–22541CrossRefGoogle Scholar
  12. 12.
    Liu Z, Deng H, Mukherjee PP (2016) Evaluating pristine and modified SnS2 as a lithium-ion battery anode: a first-principles study. ACS Appl Mat Interfaces 7:4000–4009CrossRefGoogle Scholar
  13. 13.
    Deng WN, Chen XH, Liu Z, Hu AP, Tang QL, Li Z, Xiong YN (2015) Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries. J Power Sources 277:131–138CrossRefGoogle Scholar
  14. 14.
    Jiang Y, Wei M, Feng JK, Ma YC, Xiong SL (2016) Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ Sci 9:1430–1438CrossRefGoogle Scholar
  15. 15.
    Zhang SC, Hu RR, Dai P, Yu XX, Ding ZL, Wu MZ, Li G, Ma YQ, Tu CJ (2016) Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors. Appl Surf Sci 396:994–999CrossRefGoogle Scholar
  16. 16.
    Wang Z, Chen T, Chen WX, Chang K, Ma L, Huang GC, Chen DY, Lee JY (2013) CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J Mater Chem A 1:2202–2210CrossRefGoogle Scholar
  17. 17.
    Chen XJ, Yu GY, Wang AS, Li H (2018) Preparation of micron-sized carbon microspheres supporter. J of Lanzhou Univ of Tech 44:6–10Google Scholar
  18. 18.
    Zhang PF, Zhang ZY, Chen JH, Dai S (2015) Ultrahigh surface area carbon from carbonated beverages: combining self-templating process and in situ activation. Carbon 93:39–47CrossRefGoogle Scholar
  19. 19.
    Chen X, Hou Y, Zhang B, Yang XH, Yang HG (2013) Low-cost SnS(x) counter electrodes for dye-sensitized solar cells. Chem Commun 49:5793–5795CrossRefGoogle Scholar
  20. 20.
    Wang YR, Zhang L, Wu YL, Zhong YJ, Hu Y, Wen X, Lou D (2015) Carbon-coated Fe3O4 microspheres with a porous multideck-cage structure for highly reversible lithium storage. Chem Commun 51:6921–6924CrossRefGoogle Scholar
  21. 21.
    Zhao Y, Gao DL, Ni JF, Gao LJ, Yang J, Li Y (2014) One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res 7:765–773CrossRefGoogle Scholar
  22. 22.
    Yuan CZ, Gao B, Su LH, Zhang XG (2008) NiO loaded on hydrothermally treated mesocarbon microbeads (h-MCMB) and their supercapacitive behaviors. Solid State Ionics 178:1859–1866CrossRefGoogle Scholar
  23. 23.
    Guan DS, Li JY, Gao XF, Xie YY, Yuan C (2016) Growth characteristics and influencing factors of 3D hierarchical flower-like SnS2 nanostructures and their superior lithium-ion intercalation performance. J Alloy Compd 658:190–197CrossRefGoogle Scholar
  24. 24.
    Bian XJ, Lu XF, Xue YP, Zhang CC, Kong LR, Wang C (2013) A facile one-pot hydrothermal method to produce SnS2/reduced graphene oxide with flake-on-sheet structures and their application in the removal of dyes from aqueous solution. J Colloid Interf Sci 406:37–43CrossRefGoogle Scholar
  25. 25.
    Christoforidis KC, Sengele A, Keller V, Keller N (2015) Single-step synthesis of SnS2 nanosheet-decorated TiO2 anatase nanofibers as efficient photocatalysts for the degradation of gas-phase diethylsulfide. ACS Appl Mater Interfaces 7:19324–19334CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang YC, Li J, Zhang M, Dionysiou DD (2011) Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photo catalytic reduction of aqueous Cr(VI). Environ Sci Technol 45:9324–9331CrossRefPubMedGoogle Scholar
  27. 27.
    Kim TJ, Kim CJ, Son DY, Choi MS, Park BW (2007) Novel SnS2-nanosheet anodes for lithium-ion batteries. J Power Sources 167:529–535CrossRefGoogle Scholar
  28. 28.
    Jin HQ, Gu MZ, Ji SM, Xu XJ, Liu J (2016) Reduced graphene oxide anchored tin sulfide hierarchical microspheres with superior Li-ion storage performance. Ionics 22:1–8CrossRefGoogle Scholar
  29. 29.
    Wang GX, Shen XP, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053CrossRefGoogle Scholar
  30. 30.
    Zhu WB, Yang YW, Ma DM, Wang H, Zhang Y, Hu HY (2015) Controlled growth of flower-like SnS2 hierarchical structures with superior performance for lithium-ion battery applications. Ionics 21:19–26CrossRefGoogle Scholar
  31. 31.
    Yin JF, Cao HQ, Zhou ZF, Zhang JX, Qu MZ (2012) SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. J Mater Chem 22:23963–23970CrossRefGoogle Scholar
  32. 32.
    Chen XF, Huang Y, Zhang KC, Zhang WC (2017) Cobalt fibers anchored with tin disulfide nanosheets as high-performance anode materials for lithium ion batteries. J Colloid Interface Sci 506:291–299CrossRefPubMedGoogle Scholar
  33. 33.
    Chao JF, Zhang XT, Xing SM, Fan JP, Zhao LH, Li X (2016) Hierarchical three-dimensional porous SnS2/carbon cloth anode for high-performance lithium ion batteries. Mater Sci Eng B 210:24–28CrossRefGoogle Scholar
  34. 34.
    Shen CF, Ma LY, Zheng MB, Zhao B, Qiu DF, Pan LJ, Cao JM, Shi Y (2012) Synthesis and electrochemical properties of graphene-SnS2 nanocomposites for lithium-ion batteries. J Solid State Electrochem 16:1999–2004CrossRefGoogle Scholar
  35. 35.
    Modarres MH, Lim HW, George C, Volder MD (2017) Evolution of rGO-SnS2 hybrid nanoparticle electrodes in Li-ion batteries. J Phys Chem C 24:13018–13024CrossRefGoogle Scholar
  36. 36.
    Yao JY, Liu B, Ozden S, Wu JJ, Yang SB, Rodrigues MF, Kalaga K, Dong P, Xiao P, Zhang YH, Vajtai R, Ajayan PM (2015) 3D nanostructured molybdenum diselenide/graphene foam as anodes for long-cycle life lithium-ion batteries. Electrochim Acta 176:103–111CrossRefGoogle Scholar
  37. 37.
    Xie D, Tang WJ, Wang YD, Xia XH, Zhong Y, Zhou D, Wang DH, Wang XL, Tu JP (2016) Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Res 9:1618–1629CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guoyun Yu
    • 1
  • Xiujuan Chen
    • 2
  • Ansong Wang
    • 1
  • Youliang Wang
    • 2
  1. 1.State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhouChina
  2. 2.College of Mechano-Electronic EngineeringLanzhou University of TechnologyLanzhouChina

Personalised recommendations