, Volume 25, Issue 1, pp 111–123 | Cite as

Electrochemical impedance spectroscopy characterization and parameterization of lithium nickel manganese cobalt oxide pouch cells: dependency analysis of temperature and state of charge

  • Rahul GopalakrishnanEmail author
  • Yi Li
  • Jelle Smekens
  • Ahmed Barhoum
  • Guy Van Assche
  • Noshin Omar
  • Joeri Van Mierlo
Original Paper


Characterizing lithium-ion batteries is of prime importance as it helps in understanding the safety, working temperature, voltage range, and power capabilities. Based on these results, we can then choose operating conditions which include safety protocols, application, and working environment. In this study, EIS studies of commercially available 20-Ah lithium-ion battery and a 28-Ah prototype cell with nickel manganese cobalt oxide (NMC)/graphite chemistry are used to determine the contribution of temperature and state of charge (SoC) towards the electrochemical impedance spectroscopy. These cells are manufactured for electric vehicle (EV) application. The electrode structure, particle size, stacking of the electrodes, and other entities for both the cells are provided to compare the similarities and differences between both the cells. Equivalent circuit modeling is used to analyze and comprehend the variation in impedance spectrum obtained for both the cells. It is observed that the ohmic resistance varies with both temperature and SoC and the variation with temperature is more significant for the prototype cell. The prototype cell showed better charge-transfer characteristics at lower temperatures when compared to the commercial cell.


State of charge Separators Electrolytes Electrochemical impedance spectroscopy Electric vehicle 



We acknowledge the support to our research team from “Flanders Make.”

Funding information

The research leading to these results has received funding from the [European Union’s] [European Atomic Energy Community’s] Seventh Framework Programme ([FP7/2007-2013] [FP7/2007-2011]) under grant agreement no. 608936 (see Article II.30. of the Grant Agreement).


  1. 1.
    Opitz A, Badami P, Shen L, Vignarooban K, Kannan AM (2017) Can Li-ion batteries be the panacea for automotive applications? Renew Sust Energ Rev 68:685–692. CrossRefGoogle Scholar
  2. 2.
    Nykvist B, Nilsson M (2015) Rapidly falling costs of battery packs for electric vehicles. Nat Clim Chang 5:329–332. CrossRefGoogle Scholar
  3. 3.
    Waag W, Fleischer C, Sauer DU (2013) On-line estimation of lithium-ion battery impedance parameters using a novel varied-parameters approach. J Power Sources 237:260–269. CrossRefGoogle Scholar
  4. 4.
    Beelen HPGJ, Raijmakers LHJ, Donkers MCF, Notten PHL, Bergveld HJ (2016) A comparison and accuracy analysis of impedance-based temperature estimation methods for Li-ion batteries. Appl Energy 175:128–140. CrossRefGoogle Scholar
  5. 5.
    Liaw BY, Jungst RG, Nagasubramanian G, Case HL, Doughty DH (2005) Modeling capacity fade in lithium-ion cells. J Power Sources 140:157–161. CrossRefGoogle Scholar
  6. 6.
    Franco AA (2013) Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Adv 3:13027. CrossRefGoogle Scholar
  7. 7.
    Fotouhi A, Auger DJ, Propp K, Longo S, Wild M (2016) A review on electric vehicle battery modelling: from lithium-ion toward lithium-sulphur. Renew Sust Energ Rev 56:1008–1021. CrossRefGoogle Scholar
  8. 8.
    Andre D, Meiler M, Steiner K, Walz H, Soczka-Guth T, Sauer DU (2011) Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: modelling. J Power Sources 196:5349–5356. CrossRefGoogle Scholar
  9. 9.
    Canas NA, Hirose K, Pascucci B, Wagner N, Friedrich KA, Hiesgen R (2013) Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy. Electrochim Acta 97:42–51. CrossRefGoogle Scholar
  10. 10.
    Højberg J, McCloskey BD, Hjelm J, Vegge T, Johansen K, Norby P et al (2015) An electrochemical impedance spectroscopy investigation of the overpotentials in Li-O2 batteries. ACS Appl Mater Interfaces 7:4039–4047. CrossRefGoogle Scholar
  11. 11.
    Lohmann N, Weßkamp P, Haußmann P, Melbert J, Musch T (2015) Electrochemical impedance spectroscopy for lithium-ion cells: test equipment and procedures for aging and fast characterization in time and frequency domain. J Power Sources 273:613–623. CrossRefGoogle Scholar
  12. 12.
    Christophersen JP, Motloch CG, Morrison JL, Donnellan IB, WH Morrison (2008) Impedance noise identification for state-of-health prognostics. 43rd Power Sources Conference, PhiladelphiaGoogle Scholar
  13. 13.
    Eddahech A, Briat O, Bertrand N, Delétage J-Y, Vinassa J-M (2012) Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int J Electr Power Energy Syst 42:487–494. CrossRefGoogle Scholar
  14. 14.
    Andre D, Meiler M, Steiner K, Wimmer C, Soczka-Guth T, Sauer DU (2011) Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. J Power Sources 196:5334–5341. CrossRefGoogle Scholar
  15. 15.
    Samadani E, Farhad S, Scott W, Mastali M, Gimenez LE, Fowler M, Fraser RA (2015) Empirical modeling of lithium-ion batteries based on electrochemical impedance spectroscopy tests. Electrochim Acta 160:169–177. CrossRefGoogle Scholar
  16. 16.
    Westerhoff U, Kurbach K, Lienesch F, Kurrat M (2016) Analysis of lithium-ion battery models based on electrochemical impedance spectroscopy. Energy Technol 4:1620–1630. CrossRefGoogle Scholar
  17. 17.
    USABC (1996) Electric vehicle Battery Test Procedures Manual. Revision 2, report, January 1, 1996; Idaho Falls, Idaho. ( accessed September 24, 2017), University of North Texas Libraries, Digital Library,; crediting UNT Libraries Government Documents Department
  18. 18.
    BSI (2014) Electrically propelled road vehicles—test specification for lithium-ion traction battery packs and systems. BSI Stand Publ 2012Google Scholar
  19. 19. | Towards competitive european batteries n.d. (accessed 15 Sept 2017).
  20. 20.
    Ecker M, Nieto N, Käbitz S, Schmalstieg J, Blanke H, Warnecke A, Sauer DU (2014) Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries. J Power Sources 248:839–851. CrossRefGoogle Scholar
  21. 21.
    ISO 12405-3 (2014) Electrically Propelled Road Vehicles- Test Specification for Lithium-Ion Traction Battery Packs and Systems- Part 3: Safety Performance RequirementsGoogle Scholar
  22. 22.
    Stroe DI, Swierczynski M, Stan AI, Knap V, Teodorescu R, Andreasen SJ (2014) Diagnosis of lithium-ion batteries state-of-health based on electrochemical impedance spectroscopy technique. Energy Convers Congr Expo (ECCE), IEEE 2014:4576–4582. Google Scholar
  23. 23.
    Arunachala R, Makinejad K, Athlekar S, Jossen A, Garche J (2013) Cycle life characterisation of large format lithium-ion cells. World Electr Veh Symp Exhib EVS 2014 2014:1–9.
  24. 24.
    Barai A, Chouchelamane GH, Guo Y, McGordon A, Jennings P (2015) A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy. J Power Sources 280:74–80. CrossRefGoogle Scholar
  25. 25.
    Fuller TF (1994) Relaxation phenomena in lithium-ion-insertion cells. J Electrochem Soc 141:982. CrossRefGoogle Scholar
  26. 26.
    Reichert M, Andre D, Rösmann A, Janssen P, Bremes HG, Sauer DU, Passerini S, Winter M (2013) Influence of relaxation time on the lifetime of commercial lithium-ion cells. J Power Sources 239:45–53. CrossRefGoogle Scholar
  27. 27.
    Yokoshima T, Mukoyama D, Nara H, Maeda S, Nakazawa K, Momma T, Osaka T (2017) Impedance measurements of kilowatt-class lithium ion battery modules/cubicles in energy storage systems by square-current electrochemical impedance spectroscopy. Electrochim Acta 246:800–811. CrossRefGoogle Scholar
  28. 28.
    Rasband WS, Image J (1997-2016) U.S. national institutes of health. Bethesda, Maryland.
  29. 29.
    Orendorff CJ (2012) The role of separators in lithium-ion cell safety. Electrochem Soc Interface 21(2):61–65Google Scholar
  30. 30.
    Yu L, Jin Y, Lin YS (2016) Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: effects of high melting point organic binder. RSC Adv 6:40002–40009. CrossRefGoogle Scholar
  31. 31.
    Ronald E (2016) Overview and Progress of United States Advanced Battery Consortium (USABC) Activity. Accessed 30 Oct 2017
  32. 32.
    Deimede V, Elmasides C (2015) Separators for lithium-ion batteries: a review on the production processes and recent developments. Energy Technol 3:453–468. CrossRefGoogle Scholar
  33. 33.
    Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462. CrossRefGoogle Scholar
  34. 34.
    Zhuang Q-C, Qiu X-Y, Xu S-D, Qiang Y-H, Su S-G (2012) Diagnosis of electrochemical impedance spectroscopy in lithium-ion batteries. Lithium Ion Batter - New Dev:189–226.
  35. 35.
    Orazem ME, Tribollet B (2017) Electrochemical impedance spectroscopy, 2nd ed. John Wiley, New YorkGoogle Scholar
  36. 36.
    He H, Xiong R, Fan J (2011) Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 4:582–598. CrossRefGoogle Scholar
  37. 37.
    He H, Xiong R, Guo H, Li S (2012) Comparison study on the battery models used for the energy management of batteries in electric vehicles. Energy Convers Manag 64:113–121. CrossRefGoogle Scholar
  38. 38.
    Fleischer C, Waag W, Heyn HM, Sauer DU (2014) On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models part 2. Parameter and state estimation. J Power Sources 262:457–482. CrossRefGoogle Scholar
  39. 39.
    Do DV, Forgez C, El Kadri Benkara K, Friedrich G (2009) Impedance observer for a Li-ion battery using Kalman filter. IEEE Trans Veh Technol 58:3930–3937. CrossRefGoogle Scholar
  40. 40.
    Lukács Z (1999) Evaluation of model and dispersion parameters and their effects on the formation of constant-phase elements in equivalent circuits. J Electroanal Chem 464:68–75. CrossRefGoogle Scholar
  41. 41.
    Emmanuel B (2008) Constant phase elements, depressed arcs and analytic continuation: a critique. J Electroanal Chem 624:14–20. CrossRefGoogle Scholar
  42. 42.
    Shoar Abouzari MR, Berkemeier F, Schmitz G, Wilmer D (2009) On the physical interpretation of constant phase elements. Solid State Ionics 180:922–927. CrossRefGoogle Scholar
  43. 43.
    Olofsson Y, Groot J, Katrašnik T, Tavčar G (2014) Impedance spectroscopy characterisation of automotive NMC/graphite Li-ion cells aged with realistic PHEV load profile. IEEE Int Electr Veh Conf IEVC 2014 2015:1–6.
  44. 44.
    Muenzel V, Hollenkamp AF, Bhatt AI, de Hoog J, Brazil M, Thomas DA, Mareels I (2015) A comparative testing study of commercial 18650-format lithium-ion battery cells. J Electrochem Soc 162:A1592–A1600. CrossRefGoogle Scholar
  45. 45.
    Seaman A, Dao TS, McPhee J (2014) A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J Power Sources 256:410–423. CrossRefGoogle Scholar
  46. 46.
    Osaka T, Momma T, Mukoyama D, Nara H (2012) Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery. J Power Sources 205:483–486. CrossRefGoogle Scholar
  47. 47.
    Karden E, Buller S, De Doncker RW (2002) A frequency-domain approach to dynamical modeling of electrochemical power sources. Electrochim Acta 47:2347–2356. CrossRefGoogle Scholar
  48. 48.
    Waag W, Käbitz S, Sauer DU (2013) Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl Energy 102:885–897. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rahul Gopalakrishnan
    • 1
    • 2
    Email author
  • Yi Li
    • 1
    • 2
  • Jelle Smekens
    • 1
    • 2
  • Ahmed Barhoum
    • 3
    • 4
  • Guy Van Assche
    • 3
  • Noshin Omar
    • 1
    • 2
  • Joeri Van Mierlo
    • 1
    • 2
  1. 1.Mobility, Logistic and Automotive Technology Research Center (MOBI), Department of Electrical Engineering and Energy Technology (ETEC)ElseneBelgium
  2. 2.Flanders MakeLeuvenBelgium
  3. 3.Department of Materials and ChemistryVrije Universiteit Brussel (VUB)BrusselsBelgium
  4. 4.Chemistry Department, Faculty of ScienceHelwan UniversityHelwanEgypt

Personalised recommendations