Advertisement

Ionics

, Volume 25, Issue 1, pp 221–229 | Cite as

L-cystine additive in the negative electrolyte of vanadium redox flow battery for improving electrochemical performance

  • Nanfang WangEmail author
  • Wenchang Zhou
  • Fan Zhang
Original Paper
  • 167 Downloads

Abstract

L-cystine (LC) was employed as an additive to inhibit crystallization of V(II) or V(III) specie in the negative electrolyte and extend the practical application of vanadium redox flow battery (VRFB) at below-ambient temperatures. UV–Vis spectrometry showed LC has no effect on the absorption in the range of 300–800 nm. Crossover testing indicated that LC can permeate from negative side to positive side across the membrane Nafion 117. Static thermal stability testing showed LC can significantly inhibit precipitation of V(II)~V(IV) ions or V(V) in 1.8 M vanadium electrolyte with 3.0 M H2SO4 at 5 or 50 °C. It is found that 2–4 wt% LC in vanadium electrolytes can lower viscosity compared to the blank electrolyte. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show V(III) electrolyte with 2 wt% LC exhibits superior electrochemical activity and diffusion coefficient, compared with the pristine electrolyte. VRFB single-cell tests operating at 5 and 50 °C were investigated. LC can inhibit the capacity decay and voltage efficiency loss at below-ambient temperatures. VRFB with LC obtains better performance of higher capacity retention (93.14 vs. 92.21%) and energy efficiency (73.36 vs. 68.66%) than the pristine at 5 °C.

Keywords

Vanadium redox flow battery L-cystine Negative electrolyte Additive 

Notes

Acknowledgements

We are grateful to Scientific Research Fund of Hunan Provincial Education Department (17K026).

References

  1. 1.
    Park SM, Kim H (2015) Hybrid membranes with low permeability for vanadium redox flow batteries using in situ sol-gel process. Korean J Chem Eng 32(12):2434–2442CrossRefGoogle Scholar
  2. 2.
    He Z, Jiang Y, Zhu J, Li Y, Jiang Z, Zhou H, Meng W, Wang L, Dai L (2018) Boosting the performance of LiTi 2 (PO 4) 3/C anode for aqueous lithium ion battery by Sn doping on Ti sites. J Alloy Compd 731:32–38CrossRefGoogle Scholar
  3. 3.
    He Z, Jiang Y, Li Y, Zhu J, Zhou H, Meng W, Wang L, Dai L (2018) Carbon layer-exfoliated, wettability-enhanced, SO 3 H-functionalized carbon paper: a superior positive electrode for vanadium redox flow battery. Carbon 127:297–304CrossRefGoogle Scholar
  4. 4.
    Leung P, Li X, Ponce de Leon C, Berlouis L, CTJ L, Walsh FC (2012) RSC Adv 2(27):10125CrossRefGoogle Scholar
  5. 5.
    Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312CrossRefGoogle Scholar
  6. 6.
    Huang KL, Li XG, Liu SQ, Tan N, Chen LQ (2008) Research progress of vanadium redox flow battery for energy storage in China. Renew Energ 33(2):186–192CrossRefGoogle Scholar
  7. 7.
    Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935CrossRefGoogle Scholar
  8. 8.
    Ponce de Leona C, Frias-Ferrer A, Gonzalez-Garciab J, Szantoc DA, Walsh FC (2006) J Power Sources 160(1):716CrossRefGoogle Scholar
  9. 9.
    Li X, Zhang H, Mai Z, Zhang H, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4:1147CrossRefGoogle Scholar
  10. 10.
    Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) New all-vanadium redox flow cell. J Electrochem Soc 133(5):1057CrossRefGoogle Scholar
  11. 11.
    Skyllas-Kazacos M, Grossmith F (1987) Efficient vanadium redox flow cell. J Electrochem Soc 134(12):2950CrossRefGoogle Scholar
  12. 12.
    Ulaganathan M, Aravindan V, Yan Q, Madhavi S, Skyllas-Kazacos M, Lim TM (2016) Recent advancements in all-vanadium redox flow batteries. Adv Mater Interface 3(1):1500309Google Scholar
  13. 13.
    Kazacos M, Cheng M, Skyllas-Kazacos M (1990) Vanadium redox cell electrolyte optimization studies. J Appl Electrochem 20(3):463–467CrossRefGoogle Scholar
  14. 14.
    Skyllas-Kazacos M, Kazacos G, Poon G, Verseema H (2010) Recent advances with UNSW vanadium-based redox flow batteries. Int J Energ Res 34(2):182–189CrossRefGoogle Scholar
  15. 15.
    Skyllas-Kazacos M, Kasherman D, Hong DR, Kazacos M (1991) Characteristics and performance of 1 kW UNSW vanadium redox battery. J Power Sources 35(4):399–404CrossRefGoogle Scholar
  16. 16.
    Skyllas-Kazacos M, Menictas C, Kazacos M (1996) Thermal Stability of concentrated V(V) electrolytes in the vanadium redox cell. J Electrochem Soc 143(4):L86CrossRefGoogle Scholar
  17. 17.
    Zhang J, Li L, Nie Z, Chen B, Vijayakumar M, Kim S, Wang W, Schwenzer B, Liu J, Yang Z (2011) Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. J Appl Electrochem 41(10):1215–1221CrossRefGoogle Scholar
  18. 18.
    Wen Y, Xu Y, Cheng J, Cao G, Yang Y (2013) Investigation on the stability of electrolyte in vanadium flow batteries. Electrochim Acta 96:268–273CrossRefGoogle Scholar
  19. 19.
    Vijayakumar M, Wang W, Nie Z, Sprenkle V, Hu J (2013) Elucidating the higher stability of vanadium(V) cations in mixed acid based redox flow battery electrolytes. J Power Sources 241:173–177CrossRefGoogle Scholar
  20. 20.
    Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z (2011) A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv Energ Mater 1(3):394–400CrossRefGoogle Scholar
  21. 21.
    Peng S, Wang N, Wu XJ, Liu S, Fang D, Yn L, Huang K1 (2012) Int J Electrochem Sci 7:643Google Scholar
  22. 22.
    Skyllas-Kazacos M, Kazacos M (2000) US Patent 6,562,514Google Scholar
  23. 23.
    Michael K, Maria Skyllas K (2002) US Patent 7:078,123Google Scholar
  24. 24.
    Li S, Huang K, Liu S, Fang D, Wu X, Lu D, Wu T (2011) Effect of organic additives on positive electrolyte for vanadium redox battery. Electrochim Acta 56(16):5483–5487CrossRefGoogle Scholar
  25. 25.
    Liang X, Peng S, Lei Y, Gao C, Wang N, Liu S, Fang D (2013) Effect of l-glutamic acid on the positive electrolyte for all-vanadium redox flow battery. Electrochim Acta 95:80–86Google Scholar
  26. 26.
    Chang F, Hu C, Liu X, Liu L, Zhang J (2012) Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery. Electrochim Acta 60:334–338Google Scholar
  27. 27.
    Mousa A, Skyllas-Kazacos M (2015) Effect of additives on the low-temperature stability of vanadium redox flow battery negative half-cell electrolyte. ChemElectroChem 2(11):1742–1751CrossRefGoogle Scholar
  28. 28.
    Liu J, Liu S, He Z, Han H, Chen Y (2014) Effects of organic additives with oxygen- and nitrogen-containing functional groups on the negative electrolyte of vanadium redox flow battery. Electrochim Acta 130:314–321CrossRefGoogle Scholar
  29. 29.
    Hyeon DH, Chun JH, Lee CH, Jung HC, Kim SH (2015) Composite membranes based on sulfonated poly(ether ether ketone) and SiO2 for a vanadium redox flow battery. Korean J Chem Eng 32(8):1554–1563CrossRefGoogle Scholar
  30. 30.
    Wang N, Peng S, Lu D, Liu S, Liu Y, Huang K (2012) Nafion/TiO2 hybrid membrane fabricated via hydrothermal method for vanadium redox battery. J Solid State Electr 16(4):1577–1584CrossRefGoogle Scholar
  31. 31.
    Vijayakumar M, Burton SD, Huang C, Li L, Yang Z, Graff GL, Liu J, Hu J, Skyllas-Kazacos M (2010) Nuclear magnetic resonance studies on vanadium(IV) electrolyte solutions for vanadium redox flow battery. J Power Sources 195(22):7709–7717CrossRefGoogle Scholar
  32. 32.
    Wei G, Liu J, Zhao H, Yan C (2013) Electrospun carbon nanofibres as electrode materials toward VO2+/VO2+ redox couple for vanadium flow battery. J Power Sources 241:709–717CrossRefGoogle Scholar
  33. 33.
    Gao C, Wang N, Peng S, Liu S, Lei Y, Liang X, Zeng S, Zi H (2013) Influence of Fenton’s reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery. Electrochim Acta 88(0):193–202CrossRefGoogle Scholar
  34. 34.
    Wei G, Jia C, Liu J, Yan C (2012) Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application. J Power Sources 220:185–192CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHunan Institute of EngineeringXiangtanChina

Personalised recommendations