Advertisement

Ionics

, Volume 25, Issue 1, pp 215–219 | Cite as

Effect of modifier on battery studies of silver-based FIC glasses

  • Emmadishetty Ramesh KumarEmail author
  • Puli Nageswar Rao
  • Nalluri Veeraiah
  • Bojja Appa Rao
Original Paper

Abstract

Silver-based fast ion-conducting, (FIC) 60%AgI-[M Ag2O-F{(0.4)B2O3-(0.6)TeO2}] (SBT2 system) where M/F = 0 to 2 in steps of 0.25, samples are prepared through melt-quench technique. The glassy nature is up to SBT2-6 (M/F = 1.50) samples. The highest conductivity (σ = 8.87 × 10−1 S/cm) and highest ionic transport number (Ti = 0.9994) is found for the sample SBT2-6 ([60%AgI-22%Ag2O-18%{(0.4)B2O3-(0.6)TeO2}]). Hence, SBT2-6 sample can be used as a solid electrolyte (SE) in fabrication of primary solid-state batteries (SSBs). The batteries are made up with anode (SE + Ag powder); SBT2-6 sample as SE using different cathode materials (cathode-I: [I:C] and cathode-II: [I + C:SE], where I is Iodine and C is graphite) are taken in the ratios of 6:4, 7:3, 8:2, and 9:1. Open-circuit voltages (OCVs) and short-circuit currents (SCCs) are measured, and the discharge characteristics are measured to estimate the lifetime of all batteries.

Keywords

Silver FIC glasses Solid state battery Open-circuit voltage Short-circuit currents Discharge characteristics 

Notes

Funding information

The authors are thankful to the University Grants Commission (UGC Lr. no. F.39-484/2010 (SR)) New Delhi for providing financial assistance to carry out this work.

References

  1. 1.
    B.V.R. Chowdhari, S. Radhakrishna (1986) _Eds., World Scientific, New JerseyGoogle Scholar
  2. 2.
    M.Z.A. Munshi, B.B. Owens (1989) Superionic solids and solid electrolytes, in: A. Lilaskar, S. Chandra _Eds.., Academic Press, New YorkGoogle Scholar
  3. 3.
    Guo Y-G, Hu Y-S, Lee J-S, Maier J (2006) High-performance rechargeable all-solid-state silver battery based on superionic AgI nanoplates. Electrochem Commun 8:1179–1184CrossRefGoogle Scholar
  4. 4.
    T. Takahashi, A. Kozawa _Eds. (1980), JES pressGoogle Scholar
  5. 5.
    S.D. Jones, R. Akridge, Solid State Ionics 53 (1992) 628Google Scholar
  6. 6.
    Linden D (1984) In: Ed (ed) Handbook of batteries and fuel cells. Mc-Graw Hill, New YorkGoogle Scholar
  7. 7.
    Venkateswarlu M, Satyanarayana N (1998) Mater Sci Eng B 54:18CrossRefGoogle Scholar
  8. 8.
    Gupta N, Dalvi A (2012) Electrical, structural and thermal characterization of Cu2O substituted AgI–(Cu2O)x (Ag2O)1−x–V2O5 glassy superionic system. Solid State Ionics 225:363–366CrossRefGoogle Scholar
  9. 9.
    T. Minami (1983) Solid State Ionics 9 577Google Scholar
  10. 10.
    Gupta N, Dalvi A (2011) Effect of mixed glass formers on the crystallization kinetics in AgI–Ag2O–V2O5–MoO3 glassy superionic system. Ionics 17:315–322CrossRefGoogle Scholar
  11. 11.
    Han Q, Wang F, Wang Z, Yi Z, Na Z, Wang X, Wang L (2018) PAN-based carbon fiber@SnO2 for highly reversible structural lithium-ion battery anode. Ionics 24:1049–1055CrossRefGoogle Scholar
  12. 12.
    Firnadya SA, Syahrial AZ, Subhan A (2018) Enhancing battery performance by nano Si addition to Li4Ti5O12 as anode material on lithium-ion battery. Ionics 24(4):1029–1037CrossRefGoogle Scholar
  13. 13.
    T. H. N. G. Amaraweera, N. W. B. Balasooriya, H. W. M. A. C. Wijayasinghe, N. B. Attanayake, B.-E. Mellander, M. A. K. L. Dissanayake, Ionics, doi:  https://doi.org/10.1007/s11581-018-2523-5
  14. 14.
    K. Yang, F. Ding, Y. Liu, B. Niu, J. Li, Ionics, doi:  https://doi.org/10.1007/s11581-018-2501-y
  15. 15.
    N. Huu H. Phuc, K. Morikawa, T. Mitsuhiro, H. Muto, A. Matsuda, Ionics doi:  https://doi.org/10.1007/s11581-017-2035-8
  16. 16.
    J. S. Ashwajeet & T. Sankarappa, Ionics doi:  https://doi.org/10.1007/s11581-016-1819-6
  17. 17.
    E. Ramesh Kumar, P. Nageswar Rao, K. Rajani kumari, N. Veeraiah (2018) Appa Rao Bojja, Journal of Materials Science: Materials in Electronics doi:  https://doi.org/10.1007/s10854-018-8857-y
  18. 18.
    Minami T, Takuma Y, Tanaka M (1977) Superionic conducting glasses: glass formation and conductivity in the AgI-Ag[sub 2]O-P[sub 2]O[sub 5] System. J Electrochem Soc 124:1659CrossRefGoogle Scholar
  19. 19.
    Bhaskaran N, Govindaraj G, Narayanasamy A (1995) Solid-state batteries using silver-based glassy materials. J Power Sources 55:153–157CrossRefGoogle Scholar
  20. 20.
    E. Ramesh Kumar, P. Nageswar Rao, K. Rajani Kumari, B A Rao (2017) International Journal of Emerging Technology and Advanced Engineering 7 94Google Scholar
  21. 21.
    S.S. Das, B.P. Baranwal, C.P. Gupta, P Singh (2003) Journal Power Sources 114 346–351Google Scholar
  22. 22.
    Venkateswarlu M, Satyanarayana N, Rambabu B (2000) Transport properties and battery performance studies of AgI–Ag2O–Se2O–P2O5 glass. J Power Sources 85:224–228CrossRefGoogle Scholar
  23. 23.
    Scrosati B, Papaleo F, Pistoia G (1975) Two new silver electrolytes of possible use in solid-state batteries. J Electrochem Soc 122:339CrossRefGoogle Scholar
  24. 24.
    Takahashi T, Ikeda S, Yamamoto O (1970) Solid ionics—solid electrolyte cells. J Electrochem Soc 117:1CrossRefGoogle Scholar
  25. 25.
    Chiodelli G, Magistris A, Schraldi A (1974) Some solid electrolyte cells. Electrochim Acta 19:655–656CrossRefGoogle Scholar
  26. 26.
    Murugaraj R, Govindaraj G, Ramasamy S (2002) Characterization of a silver-ion conducting solid-state battery with a new compact battery discharge unit. J Power Sources 112:184–190CrossRefGoogle Scholar
  27. 27.
    J.B. Wagner, C Wagner (1957) J Chem Phys 26 1597–1601Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Emmadishetty Ramesh Kumar
    • 1
    Email author
  • Puli Nageswar Rao
    • 1
  • Nalluri Veeraiah
    • 2
  • Bojja Appa Rao
    • 1
  1. 1.Department of PhysicsOsmania UniversityHyderabadIndia
  2. 2.Department of PhysicsAcharya Nagarjuna UniversityGunturIndia

Personalised recommendations