Advertisement

Ionics

, Volume 25, Issue 1, pp 163–169 | Cite as

Solvation effect of [BMIM]Cl/AlCl3 ionic liquid electrolyte

  • Yanhong KangEmail author
  • Shimou ChenEmail author
  • Qian Wang
  • Haiyan Lang
  • Chuqiao Jia
  • Bo Zhang
Original Paper
  • 104 Downloads

Abstract

Four kinds of solvents, methylene chloride (CH2Cl2), toluene (TOL), ethyl acetate (EtoAc), and dimethyl carbonate (DMC), were added into the 1-butyl-3-methylimidazolium chloroaluminate ionic liquid ([BMIM]Cl/AlCl3 IL) to improve the property of the IL-based electrolyte for aluminum (Al) electrolysis. Solvation effects of these solvents on the physical properties, electrochemical properties, and electroactive ion of the [BMIM]Cl/AlCl3 IL-based electrolyte were investigated. It was found that the viscosity of the IL electrolyte decreased after adding CH2Cl2 or TOL, and the conductivity increased while the change of the conductivity and the viscosity moved in the opposite direction with the addition of EtoAc or DMC. The UV-Vis spectra showed that the electroactive Al ion continued existence after adding CH2Cl2 or TOL, but there was solvation effect between TOL and BMIM+. On the other hand, both EtoAc and DMC had solvation effects with electroactive Al ion and BMIM+. The results illustrated that solvation effect was the key effect on the reduction of Al on the cathode, and further influenced the morphology of the Al deposits. In addition, the concentration polarization reduced and the efficiency of electrolysis improved after adding CH2Cl2 or TOL. Furthermore, bright Al coatings were obtained finally by adding CH2Cl2 into [BMIM]Cl/AlCl3 IL electrolyte (when the mole ratio of CH2Cl2 is around 66.7~75%).

Keywords

Ionic liquids Electrodeposition Aluminum Solvation effect 

Notes

Funding information

This study was supported by the National Natural Science Foundation of China (21276257, 21210006, 51404230), Beijing Natural Science Foundation of China (2132054), National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2012BAF03B01), and Department of Education of Liaoning Province Science Foundation (L201602).

References

  1. 1.
    Abbott AP, Frisch G, Hartley J, Ryder KS (2011) ChemInform Abstract: Processing of metals and metal oxides using ionic liquids. Green Chem 13(3):471–481CrossRefGoogle Scholar
  2. 2.
    Abbott AP, McKenzie KJ (2006) Application of ionic liquids to the electrodeposition of metals. ChemInform 37(49):4265–4279CrossRefGoogle Scholar
  3. 3.
    Zhang M, Kamavarum V, Reddy RG (2003) New electrolytes for aluminum production: ionic liquids. JOM 55(11):54–57CrossRefGoogle Scholar
  4. 4.
    Zheng Y, Dong K, Wang Q, Zhang SJ, Zhang QQ (2012) Electrodeposition of zinc coatings from the solutions of zinc oxide in imidazolium chloride/urea mixtures. Science China Chem 55(8):1587–1597CrossRefGoogle Scholar
  5. 5.
    Yue G, Zhang S, Zhu Y, Lu X, Li S, Li Z (2009) A promising method for electrodeposition of aluminium on stainless steel in ionic liquid. AICHE J 55(3):783–796CrossRefGoogle Scholar
  6. 6.
    Pradhan D, Reddy RG (2014) Mechanistic study of Al electrodeposition from EMIC–AlCl 3 and BMIC–AlCl 3 electrolytes at low temperature. Mater Chem Phys 143(2):564–569CrossRefGoogle Scholar
  7. 7.
    Endo A, Miyake M, Hirato T (2014) Electrodeposition of aluminum from 1,3-dimethyl-2-imidazolidinone/AlCl 3 baths. Electrochim Acta 137(8):470–475CrossRefGoogle Scholar
  8. 8.
    Su CJ, Hsieh YT, Chen CC, Sun IW (2013) Electrodeposition of aluminum wires from the Lewis acidic AlCl 3 /trimethylamine hydrochloride ionic liquid without using a template. Electrochem Commun 34(5):170–173CrossRefGoogle Scholar
  9. 9.
    Abedin SZE (2012) Electrochemical behavior of aluminum and some of its alloys in chloroaluminate ionic liquids: electrolytic extraction and electrorefining. J Solid State Electrochem 16(2):775–783CrossRefGoogle Scholar
  10. 10.
    Nathalie MRD, Ekaterina IID, Thomas Rüther D, Maria Forsyth P, Douglas RMP, Theo Rodopoulos D, Michael DH, Alan MBP (2009) Aluminium speciation in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide/AlCl 3 mixtures. Chem Eur J 15(14):3435–3447CrossRefGoogle Scholar
  11. 11.
    Eiden P, Liu Q, Frank Endres P, Krossing I (2009) An experimental and theoretical study of the aluminium species present in mixtures of AlCl 3 with the ionic liquids [BMP]Tf 2 N and [EMIm]Tf 2 N †. Chemistry (Weinheim an der Bergstrasse, Germany) 15(14):3426Google Scholar
  12. 12.
    Giridhar P, Abedin SZE, Endres F (2012) Electrodeposition of aluminium from 1-butyl-1-methylpyrrolidinium chloride/AlCl3 and mixtures with 1-ethyl-3-methylimidazolium chloride/AlCl3. Electrochim Acta 70(6):210–214CrossRefGoogle Scholar
  13. 13.
    Pradhan D, Reddy RG (2012) Dendrite-free aluminum electrodeposition from AlCl 3 -1-ethyl-3-methyl-imidazolium chloride ionic liquid electrolytes. Metall Mater Trans B 43(3):519–531CrossRefGoogle Scholar
  14. 14.
    Pradhan D, Mantha D, Reddy RG (2009) The effect of electrode surface modification and cathode overpotential on deposit characteristics in aluminum electrorefining using Emic–Alcl3 ionic liquid electrolyte. Electrochim Acta 54:6661–6667CrossRefGoogle Scholar
  15. 15.
    Yue G, Lu X, Zhu Y, Zhang X, Zhang S (2009) Surface morphology, crystal structure and orientation of aluminium coatings electrodeposited on mild steel in ionic liquid. Chem Eng J 147(1):79–86CrossRefGoogle Scholar
  16. 16.
    Liu L, Lu X, Cai Y, Zheng Y, Zhang S (2012) Influence of additives on the speciation, morphology, and nanocrystallinity of aluminium electrodeposition. Aust J Chem 65(11):1523CrossRefGoogle Scholar
  17. 17.
    Li B, Fan C, Chen Y, Lou J, Yan L (2011) Pulse current electrodeposition of Al from an AlCl 3 -EMIC ionic liquid. Electrochim Acta 56(16):5478–5482CrossRefGoogle Scholar
  18. 18.
    Tang J, Azumi K (2011) Optimization of pulsed electrodeposition of aluminum from AlCl 3 -1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochim Acta 56(3):1130–1137CrossRefGoogle Scholar
  19. 19.
    Barchi L, Bardi U, Caporali S, Fantini M, Scrivani A, Scrivani A (2010) Electroplated bright aluminium coatings for anticorrosion and decorative purposes. Prog Org Coat 67(2):146–151CrossRefGoogle Scholar
  20. 20.
    Kim K, Lang C, Kohl PA (2005) The role of additives in the electroreduction of sodium ions in chloroaluminate-based ionic liquids. J Electrochem Soc 152:E9–E13CrossRefGoogle Scholar
  21. 21.
    Zhang Q, Wang Q, Zhang S, Lu X (2014) Effect of nicotinamide on electrodeposition of Al from aluminium chloride (AlCl 3 )-1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquids. J Solid State Electrochem 18(1):257–267CrossRefGoogle Scholar
  22. 22.
    Endres F, Bukowski M, Hempelmann R, Natter H (2003) Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angew Chem 42(29):3428–3430CrossRefGoogle Scholar
  23. 23.
    Tetsuya T, Koshiro K, Masahiro B, Shotaro S, Yuichi I, Taiki S, Satoshi S, Hiroyuki Y, Masanori O, Akihito I (2013) Physicochemical properties of 1-alkyl-3-methylimidazolium chloride–urea melts. Electrochim Acta 100(7):285–292Google Scholar
  24. 24.
    Kang Y, Chen S, Zhang J, Lang H, Zhang S (2013) Electrodeposition of aluminum from [BMIM]CI/A1Cl3 ionic liquids at low temperature. CIESC J 64:147–154Google Scholar
  25. 25.
    Fendt S, Padmanabhan S, Blanch HW, Prausnitz JM (2011) Viscosities of acetate or chloride-based ionic liquids and some of their mixtures with water or other common solvents. Jchemengdata 56(1):31–34Google Scholar
  26. 26.
    Luo J, Hu J, Saak W, Beckhaus R, Wittstock G, Vankelecom IFJ, Agert C, Conrad O (2011) Protic ionic liquid and ionic melts prepared from methanesulfonic acid and 1H-1,2,4-triazole as high temperature PEMFC electrolytes. J Mater Chem 21(28):10426.  https://doi.org/10.1039/c0jm04306k CrossRefGoogle Scholar
  27. 27.
    Luo J, Tan TV, Conrad O, Vankelecom IF (2012) 1H-1,2,4-Triazole as solvent for imidazolium methanesulfonate. Phys Chem Chem Phys : PCCP 14(32):11441–11447.  https://doi.org/10.1039/c2cp41098b CrossRefGoogle Scholar
  28. 28.
    Zhou G, Paek E, Hwang GS, Manthiram A (2015) Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760.  https://doi.org/10.1038/ncomms8760 CrossRefGoogle Scholar
  29. 29.
    Weingärtner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed 47(4):654–670.  https://doi.org/10.1002/anie.200604951 CrossRefGoogle Scholar
  30. 30.
    Bayley PM, Lane GH, Rocher NM, Clare BR, Best AS, MacFarlane DR, Forsyth M (2009) Transport properties of ionic liquid electrolytes with organic diluents. Phys Chem Chem Phys 11(33):7202–7208.  https://doi.org/10.1039/B902200G CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringShenyang Normal UniversityShenyangPeople’s Republic of China

Personalised recommendations