Advertisement

Ionics

, Volume 25, Issue 1, pp 25–33 | Cite as

A flexible NASICON-type composite electrolyte for lithium-oxygen/air battery

  • Kaifang Zhang
  • Shijia Mu
  • Wei LiuEmail author
  • Ding Zhu
  • Zhendong Ding
  • Yungui ChenEmail author
Original Paper
  • 279 Downloads

Abstract

Lithium-air/oxygen battery has raised widespread interest due to its extraordinary theoretical energy density (up to 3500 Wh kg−1). In this study, a flexible free-standing NASICON (Na-super ionic conductor)-type hybrid solid-state polymer electrolyte (HSPE) based on PVDF-HFP (poly(vinylidene fluoride-hexafluoropropylene)) copolymer and NASICON LATP (Li1.3Al0.3Ti1.7(PO4)3) was prepared and investigated. The HSPE membranes exhibited an ionic conductivity of 1.02 × 10−4 S cm−1 at room temperature along with a electrochemical window from 2 to 4.5 V. Using the HSPE, a lithium-oxygen/air battery with an inorganic solid-state cathode was fabricated. High initial discharge capacities of 4654 and 5564.3 mAh g−1 were reached under pure O2 and ambient air, respectively. Compared to conventional porous polypropylene (PP) separator, the HSPE membrane alleviated the corrosion of the lithium anode, thus improving the cyclability of the cells. The results presented in this study suggest the great potential application of NASICON-type HSPE membrane in solid-state rechargeable lithium-air/oxygen batteries.

Keywords

Composite electrolyte Flexible membrane Lithium-oxygen/air battery NASICON PVDF-HFP 

Notes

Acknowledgements

We thank Mrs.Wang Hui in Analytical and Testing Center of SCU for her help during SEM imaging.

Funding information

We received financial support from the Natural Science Foundation of China (NSFC 51702223 and 21603154) and Sichuan University Scientific Research Foundation for Young Teachers (No.2015SCU11055).

Supplementary material

11581_2018_2580_MOESM1_ESM.pdf (733 kb)
ESM 1 (PDF 733 kb)

References

  1. 1.
    Wang Y, He P, Zhou HS (2011) A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ Sci 4(12):4994–4999CrossRefGoogle Scholar
  2. 2.
    Zheng JP, Liang RY, Hendrickson MA, Plichta EJ (2008) Theoretical energy density of Li-air batteries. J Electrochem Soc 155(6):432–437CrossRefGoogle Scholar
  3. 3.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29CrossRefGoogle Scholar
  4. 4.
    Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium-air battery. Nat Chem 4(7):579–585CrossRefGoogle Scholar
  5. 5.
    Lim HD, Park KY, Song H, Jang EY, Gwon H, Kim J, Kim YH, Lima MD, Robles RO, Lepró X, Baughman RH, Kang K (2013) Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode. Adv Mater 25(9):1348–1352CrossRefGoogle Scholar
  6. 6.
    Li Y, Guo K, Li J, Dong X, Yuan T, Li X, Yang H (2014) Controllable synthesis of ordered mesoporous NiFe2O4 with tunable pore structure as a bifunctional catalyst for Li-O2 batteries. ACS Appl Mater Interfaces 6(23):20949–20957CrossRefGoogle Scholar
  7. 7.
    Wang Y, Zheng D, Yang XQ, Qu D (2011) High rate oxygen reduction in non-aqueous electrolytes with the addition of perfluorinated additives. Energy Environ Sci 4(9):3697–3702CrossRefGoogle Scholar
  8. 8.
    Lu YC, Crumlin EJ, Veith GM, Harding JR, Mutoro E, Baggetto L, Dudney NJ, Liu Z, Shao-Horn Y (2012) In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci Rep 2(10):715–720CrossRefGoogle Scholar
  9. 9.
    Rahman MA, Wang X, Wen C (2014) A review of high energy density lithium–air battery technology. J Appl Electrochem 44(1):5–22CrossRefGoogle Scholar
  10. 10.
    Shao Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang JG, Wang Y, Liu J (2013) Making Li-air batteries rechargeable: material challenges. Adv Funct Mater 23(8):987–1004CrossRefGoogle Scholar
  11. 11.
    Read JJ (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149(9):1190–1195CrossRefGoogle Scholar
  12. 12.
    Xu W, Wang JL, Ding F, Chen XL, Nasybulin E, Zhang YH, Zhang JG (2014) Lithium metal anode for rechargeable batteries. Energy Environ Sci 7(2):513–537CrossRefGoogle Scholar
  13. 13.
    Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q (2015) A review of solid electrolyte interphases on lithium metal anode. Adv Sci 3(3):1500213CrossRefGoogle Scholar
  14. 14.
    Elia GA, Hassoun J, Kwak WJ, Sun YK, Scrosati B, Mueller F, Bresser D, Passerini S, Oberhumer P, Tsiouvaras N, Reiter J (2014) An advanced lithium-air battery exploiting an ionic liquid-based electrolyte. Nano Lett 14:6572–6577CrossRefGoogle Scholar
  15. 15.
    Fu KK, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C, Li Y, Wachsman ED, Hu L (2016) Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci U S A 113(26):7094–7099CrossRefGoogle Scholar
  16. 16.
    Aetukuri NB, Kitajima S, Jung E, Thompson LE, Virwani K, Reich ML, Kunze M, Schneider M, Schmidbauer W, Wilcke WW, Bethune DS, Scott JC, Miller RD, Kim HC (2015) Flexible ion-conducting composite membranes for lithium batteries. Adv Energy Mater 5(14):1500265CrossRefGoogle Scholar
  17. 17.
    Yi J, Guo S, He P, Zhou HS (2017) Status and prospects in polymer electrolyte for solid-state Li-O2 (air) battery. Energy Environ Sci 10:860–884CrossRefGoogle Scholar
  18. 18.
    Imanishi N, Hasegawa S, Zhang T, Hirano A, Takeda Y, Yamamoto O (2008) Lithium anode for lithium-air secondary batteries. J Power Sources 185(2):1392–1397CrossRefGoogle Scholar
  19. 19.
    Li FJ, Kitaura H, Zhou HS (2013) The pursuit of rechargeable solid-state li-air batteries. Energy Environ Sci 6(8):2302–2311CrossRefGoogle Scholar
  20. 20.
    Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). British Polymer Journal 7:319–327CrossRefGoogle Scholar
  21. 21.
    Kumar B, Nellutla S, Thokchom JS, Chen C (2006) Ionic conduction through heterogeneous solids: delineation of the blocking and space charge effects. J Power Sources 160(2):1329–1335CrossRefGoogle Scholar
  22. 22.
    Zhang D, Li R, Huang T, Yu A (2010) Novel composite polymer electrolyte for lithium air batteries. J Power Sources 195(4):1202–1206CrossRefGoogle Scholar
  23. 23.
    Ye H, Huang J, Xu JJ, Khalfan A, Greenbaum SG (2007) Li ion conducting polymer gel electrolytes based on ionic liquid/PVDF-HFP blends. J Electrochem Soc 154(11):1048–1057CrossRefGoogle Scholar
  24. 24.
    Abraham KM, Jiang Z (1997) PEO-like polymer electrolytes with high room temperature conductivity. J Electrochem Soc 144(6):136–137CrossRefGoogle Scholar
  25. 25.
    Yang PX, Cui WY, Li LB, Liu L, An MZ (2012) Characterization and properties of ternary P(VdF-HFP)-LiTFSI-EMITFSI ionic liquid polymer electrolytes. Solid State Sci 14(5):598–606CrossRefGoogle Scholar
  26. 26.
    Wang YJ, Pan Y, Kim D (2005) Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes. J Power Sources 159(1):690–701CrossRefGoogle Scholar
  27. 27.
    Narváez-Semanate JL, Rodrigues ACM (2010) Microstructure and ionic conductivity of Li1+xAlxTi2-x(PO4)3 NASICON glass-ceramics. Solid State Ionics 181(25–26):1197–1204CrossRefGoogle Scholar
  28. 28.
    Best AS, Ewman PJ, MacFarlane DR, Nairn KM, Wong S, Forsyth M (1999) Characterisation and impedance spectroscopy of substituted Li1.3Al0.3Ti1.7(PO4)3-x(ZO4)x(Z=V,Nb) ceramics. Solid State Ionics 126(1–2):191–196CrossRefGoogle Scholar
  29. 29.
    Xu X, Wen Z, Yang X, Zhang J, Gu Z (2006) High lithium ion conductivity glass-ceramics in Li2O-Al2O3-TiO2-P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ionics 177(26–32):2611–2615CrossRefGoogle Scholar
  30. 30.
    Zhu D, Zhang L, Song M, Wang XF, Mei J, Lau LWM, Yungui C (2013) Solvent autoxidation, electrolyte decomposition, and performance deterioration of the aprotic Li-O2 battery. J Solid state Electron 17(11):2865–2870CrossRefGoogle Scholar
  31. 31.
    Gray FM (1997) Solid polymer electrolytes: fundamentals and technological applications. The Royal Society of Chemistry, LondonGoogle Scholar
  32. 32.
    Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745CrossRefGoogle Scholar
  33. 33.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1997) Nanocomposite polymer electrolytes for lithium batteries. Nature 496(6692):456–458CrossRefGoogle Scholar
  34. 34.
    Zhang JQ, Sun B, Xie XQ, Katja K, Wang GX (2015) Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether. Electrochim Acta 183:56–62CrossRefGoogle Scholar
  35. 35.
    Besenhard J, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68 (1):87–90Google Scholar
  36. 36.
    Zhang J, Xu W, Wei L (2010) Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air. J Power Sources 195(21):7438–7444CrossRefGoogle Scholar
  37. 37.
    Liu T, Leskes M, Yu WJ, Moore AJ, Zhou L, Bayley PM, Kim G, Grey CP (2015) Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350(6260):530–533CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduChina
  2. 2.Institute of New Energy and Low-Carbon TechnologySichuan UniversityChengduChina

Personalised recommendations